
Towards Mastering Tensor Networks: A Comprehensive Guide

Beheshteh T. Rakhshan
Guillaume Rabusseau

1

Contents
1 Tensor Networks Basics 5

1.1 What are Tensor Networks? . 5
1.2 Inner Product, Outer Product, Trace and Norm . 8
1.3 Copy Tensors (Hyperedges) . 10
1.4 Matrix Factorization in Tensor Networks . 12

2 Operations on Tensors 13
2.1 Permute and Reshape Tensors . 13
2.2 Products . 14
2.3 Useful TN results . 19

3 Tensor Decompositions 20
3.1 CANDECOMP/PARAFAC (CP) Decomposition . 20
3.2 Tucker Decomposition . 22
3.3 Tensor Train (TT) Decomposition . 23
3.4 Efficient Operations in TT Format. 26
3.5 Other decompositions: Tensor Ring, PEPS & Hierarchical Tucker 27

4 Computing Gradients with Tensor Networks 28
4.1 Jacobians . 28
4.2 Applications . 31

5 Probability Distributions and Random Vectors 33
5.1 Probability Distributions and Tensor Decompositions . 33

5.1.1 Probability Distributions as Tensors . 33
5.1.2 Tensor Train Parameterization of Probability Distributions 34

5.2 Computing Expectations of Random Tensor Networks . 35

2

÷

Notations

A General tensor containing n ≥ 0 modes
A ∈ Rd1×d2×d3 A 3rd-order tensor A with shape (d1, d2, d3)
Ai,j,k The (i, j, k)’th element of a 3rd-order tensor A
Ai,:,k Mode-2 fiber of a 3rd-order tensor A, equivalent to a vector v ∈ Rd2

A(2) Mode-2 flattening of a (3rd-order) tensor A, equivalent to a matrix M ∈ Rd2×d1d3

A ◦B The tensor product (equiv. outer product) of tensors A and B
A ≃ B An isomorphism between two tensors A with B with compatible shapes

TN(G, R) Space of all tensors expressable as a tensor network with graph G and rank function R
TN(G, R,G) A tensor network with graph G, rank function R, and core assignment function G

⟨A, B⟩ Inner product between tensors A and B
∥A∥F Frobenius norm of the tensor A
A⊗B The Kronecker product of tensors A and B

A Matrix; A rank-2 tensor better: (tensor of order 2)
Aij The ij-th element of the matrix A
A−1 The inverse matrix of matrix A
AT The transposed matrix of matrix A
I The identity matrix

A⊙B The Khatri-Rao product of matrices A and B
A ∗B The Hadamard product of matrices A and B

a Column vector; A rank-1 tensor
ai The i-th element of vector a
vec(A) Column vector obtained by concatenating the columns of the matrix A
a Scalar; A rank-0 tensor

3

Introduction
Tensor methods have gained prominence as an effective approach for managing high-dimensional data. These methods
excel at capturing complex structures in multi-modal datasets and have demonstrated success across various domains,
including quantum physics, neuroimaging, signal processing, machine learning, financial analysis, biology, and
many more. To talk about tensors, we should start with the definition of a tensor. We define an N -th order tensor
T ∈ Rd1×···×dN to be a collection of indexed coefficients T i1,...,iN

∈ R, referred to as the elements of T , where
each index ij is associated with the j-th dimension of T and varies over the set [dj] = {1, 2, · · · , dj}. N -th order
tensors are a natural generalization of vectors and matrices (corresponding to the cases of N = 1 and N = 2,
respectively), where each axis represents a mode. The tuple d = (d1, · · · , dN) is referred to as the shape of T ,
with dj ∈ [dj] referred to as the dimension of the j-th mode of T . The collection of all tensors with a given
shape d form a vector space of dimension D =

∏N
j=1 dj , where addition of tensors and multiplication by scalars

is defined elementwise as (T + T ′)i1,...,iN
= T i1,...,iN

+ T ′
i1,...,iN

and (cT)i1,...,iN
= cT i1,...,iN

. This vector
space is endowed with the inner product

〈
T , T ′〉 :=

∑d1
i1=1 · · ·

∑dN

iN =1 T i1,...,iN
T ′

i1,...,iN
, as well as the p-norms

∥T ∥p :=
(∑d1

i1=1 · · ·
∑dN

iN =1 |T i1,...,iN
|p
)1/p

for any p ≥ 1. We will refer to the case of p = 2 as the Frobenius norm,

denoted by ∥T ∥F = ∥T ∥2 =
√
⟨T , T ⟩

However, as we can see, by increasing the dimensionality of tensors, their representation and manipulation
become significantly more complex, and working with tons of indices becomes frustrating. To remedy this problem,
tensor networks offer a powerful solution by providing both a compact visual language and an efficient computational
framework for handling high-dimensional tensors. Their graphical notations not only simplify complex tensor operations
but also enhance interpretability, making tensor algebra more accessible and intuitive. Although widely used in quantum
physics, tensor network diagrams remain largely underutilized in mathematically focused fields like deep learning-
despite the central role of high-dimensional tensors in these areas. This shows the need for a clear, easy-to-follow
guide aimed at people in technical fields, not just those in quantum computing. Our goal is to offer a self-contained,
comprehensive guide to tensor networks, providing an accessible set of tools for working with high-dimensional tensors.

Organization
This manuscript is organized into five main chapters.

• Chapter 1 introduces the fundamentals of tensors and their graphical representation. We explore how tensors are
depicted and organized using graphical notation, along with key terminology and definitions. The chapter then
guides the reader through essential matrix operations and their generalizations to tensors and demonstrates how
these operations can be visualized using tensor network diagrams. Finally, more advanced topics—such as copy
tensors and matrix factorizations with their graphical notations are introduced toward the end of the chapter.

• Chapter 2 focuses on various operations involving tensors. It begins by introducing tensor fibers and slices,
followed by a formal treatment of reshaping tensors into matrices and vectors using tensor network diagrams.
The chapter then presents several types of tensor products—including the Kronecker, Khatri-Rao, and Hadamard
products—along with their corresponding representations in tensor networks. Readers are also introduced to
useful identities associated with these products.At the end of the chapter, we introduce useful tensor network
results by defining concepts related to the rank of tensor matricizations.

• Chapter 3 explores tensor decompositions. As mentioned earlier, working with high-order tensors can be chal-
lenging, as the number of parameters grows exponentially with the tensor’s order. Similar to how singular value
decomposition (SVD) simplifies matrix operations, several decomposition methods break tensors into smaller,
more manageable components. Among these, the CANDECOMP/PARAFAC (CP) and Tucker decompositions
are two of the most widely used techniques, offering compressed representations of high-dimensional tensors.
However, the Tucker decomposition still suffers from exponential parameter growth, while the CP decompo-
sition, though more scalable, involves an NP-hard problem when computing the rank. The Tensor Train (TT)
decomposition overcomes these challenges by scaling linearly with tensor order and supporting efficient, stable
numerical algorithms. Furthermore, the concept of matrix rank can be generalized to tensors in various ways, each
corresponding to a different decomposition model. The chapter begins with an introduction to CP decomposition,
followed by a detailed walkthrough of various tensor factorizations, including their mathematical formulations

4

and graphical representations. Finally, we focus on performing efficient operations in the Tensor Train format
and introduce more advanced decomposition techniques.

• Chapter 4 presents an intuitive and elegant approach to handling high-order derivatives using tensor network
graphical notation. We begin by introducing the classical definitions of gradients and Jacobians, along with their
representations in tensor network diagrams. This is followed by a revisiting of classical derivative identities
and gradient computations within the tensor network framework. Finally, we explore two of the most common
applications of tensor network-based gradients.

• Chapter 5 delves into one of the most powerful applications of tensor networks—their ability to efficiently
represent and compute high-dimensional probability distributions. We begin by demonstrating how tensor
network diagrams can be used to encode complex probability distributions and compute their marginals in
a structured and visually intuitive way. The chapter then shifts focus to the expectations of random tensors,
introducing how these expectations can be expressed and manipulated using tensor network graphical notation.
This provides a unified and elegant framework for probabilistic reasoning in high-dimensional spaces.

Target Audience

This manuscript is designed as an accessible resource for both academic and industry audiences. It spans a wide
range of fields—including mathematics, statistics, physics, machine learning, data science, and beyond—making
it a versatile reference for anyone working with high-dimensional data and tensor-based methods. A foundational
understanding of first-year undergraduate mathematics is sufficient to grasp the operations discussed. To maintain
clarity and ease of interpretation, we primarily illustrate concepts using third-order tensors. The primary goal of
this book is to help readers from diverse backgrounds who are looking for intuitive tools to understand and work
confidently with high-dimensional tensors.

In this manuscript, we use LATEX and Tikz package to illustrate all tensor diagrams.

1 Tensor Networks Basics
As their order increases, representing and working with tensors becomes more complicated. Tensor networks provide an
efficient framework for working with these high-order objects, simplifying both their representation and analysis. The
graphical notation of tensor networks offers an intuitive way to visualize and simplify complex tensor operations [Orús,
2014, Biamonte and Bergholm, 2017]. In this section, we introduce basic notions on tensors and common tensor
operations using the language of tensor networks.

1.1 What are Tensor Networks?
As their name suggests, Tensor Networks (TNs) are simply tensors connected to each other to form a network. More
precisely, a tensor network is a graph where vertices represent tensors and edges represent contractions. The graphical
notation for tensor networks was first introduced by [Penrose et al., 1971]. Tensors are represented by shapes with
legs (edges), i.e., T . We will use different shapes, such as rectangles, triangles, or circles, and various colors to

represent tensors. Shapes and colors serve mainly as visual cues. The order of a tensor is its number of dimensions,
e.g., an N -th order tensor T ∈ Rd1×···×dN is a multidimensional array of scalars T i1,...,iN

indexed by N indices
i1 ∈ [d1], i2 ∈ [d2], · · · , iN ∈ dN . Each axis is called a mode of a tensor: an N th order tensor has N modes.

Tensors naturally generalize vectors and matrices to higher-order arrays. As the order increases, representing these
arrays becomes more challenging. Tensor networks provide a simple and intuitive way to represent and manipulate
these higher-order objects. Complex operations on tensors can be represented more easily with graphical notations of
tensor networks [Biamonte and Bergholm, 2017, Orús, 2014].

Tensor Network Nodes In a tensor network, each node (or vertex) represents a tensor and the number of legs (incident
edges) corresponds to the order of the tensor: scalars are nodes with no edges, vector nodes have single edge, matrix
nodes have two edges, and so on, e.g„

5

a ∈ R, a d ∈ Rd, A
d2d1 ∈ Rd1×d2 , A

d2d1

d3

∈ Rd1×d2×d3 ,
d2d1 d3 d4

B ∈ Rd1×d2×d3×d4 .

represent a scalar, a vector, a matrix, a 3rd and a 4th order tensors, respectively.
Throughout this manuscript,

• Tensors are represented by colored shapes called nodes, where the colors and shape have no specific meaning (un-
less stated otherwise).

• The dimension of each mode of a tensor is depicted by a gray letter positioned at the top of the corresponding leg,

e.g., A
d2d1

d3

∈ Rd1×d2×d3 , is a 3rd order tensor of size d1 × d2 × d3.

• Indices are presented by blue letters at the very end of edges, i.e., Ai,j,k = A
ji

k

is the (i, j, k)th element of

the 3rd order tensor A.

Note that large matrices can sometimes be viewed as high-order tensors through reshaping, e.g.,

T = T
J1J2J3J4I1I2I3I4 ∈ RI1I2I3I4×J1J2J3J4 ≡ T =

I2I1 I3 I4

J2J1 J3 J4

T ∈ RI1×I2×I3×I4×J1×J2×J3×J4 .

Tensor Network Edges In tensor network diagram, legs are of two types: contracted legs (those connecting two
tensors) and un-contracted legs, also called free legs, with one dangling end (i.e., a leg that is not connected to any
other tensor). As mentioned above, un-contracted legs correspond to free indices: the number of free legs indicates the
order of a tensor: scalars have no free legs, vectors have one, matrices have two, and higher-order tensors have three or
more. Contracted legs represent contractions: tensors can be connected along legs of the same sizes, which represents a
summation (contraction) over the connected modes. We use the terms summation and contraction interchangeably. The
most common contraction operation is matrix multiplication. For two matrices A ∈ Rd1×R, B ∈ RR×d2 , their matrix
product corresponds to a contraction between the 2nd mode of A and the 1st mode of B:

(AB)ij = A B
Ri j

=
R∑

r=1
AirBrj , for i ∈ [d1], j ∈ [d2] . (1)

Since this equality is true for all indices i and j, we can simply write

AB = A B
Rd1 d2 ∈ Rd1×d2 . (2)

In the diagram above, we can see that there is a connection between the legs with the same size R. This is consistent
with matrix multiplication where there is a sum over indices with the same dimension. Finally as the resulting diagram
has two free legs, it represents a matrix. Here the final object is a matrix which can be represented as single node,
demonstrating how nodes can be merged in tensor networks:

AB = M⇔ A B
Rd1 d2 = M

d2d1
.

Contraction between two matrices can directly be extended to contractions between a matrix and a vector, a tensor
and a matrix, a tensor a matrix and a vector products, etc. Here are some examples of tensor networks with their
corresponding mathematical expressions:

A ∈ Rd1×R, a ∈ RR : A vRi =
R∑

r=1
Airvr, (3)

6

A ∈ Rd1×R×d2 , A ∈ RR×d3 : A A
Ri

j

k =
R∑

r=1
AijrArk, (4)

A ∈ Rd1×R×d2 , A ∈ RR×d3 , a ∈ Rd3 : A A aR d3i

j

=
R∑

r=1

d3∑
k=1

AijrArkak. (5)

As we can see in all diagrams above, edges between two nodes represent summations. They also indicate that two
tensors share dimensions of the same size on the corresponding mode. As explained before, the numbers of free legs in
the tensor network corresponds to the order of the tensor it represents. For the previous examples, we have

A vRd1 ∈ Rd1 , A A
Rd1

d2

d3 ∈ Rd1×d2×d3 , and A A aR d3d1

d2

∈ Rd1×d2 .

From mathematical expressions to tensor networks, and back. Tensor networks are simple to work with because
there is no strict rules for representing legs and nodes. In tensor network diagrams, nodes and edges can be positioned
arbitrarily in the plane, only the graph structure matters. For example, when translating matrix multiplication into
a tensor network diagram, the key feature is to ensure the dimension of the connected legs are consistent, e.g., for
A ∈ Rd1×R, B ∈ RR×d2 all diagrams below illustrate the same matrix multiplication:

AB = A B
Rd1 d2 = A B

R

d1 d2

= B A
R

d2

d1

=
A

B

R

d1

d2

.

Note that, because of the sizes of A ∈ Rd1×R and B ∈ RR×d2 , there is only one way to do the contraction between the
two, hence there would be no ambiguity in the diagrams above even if we omitted the dimensions on the edges.

On the other hand, translating tensor network diagrams into mathematical formulations can lead to multiple

interpretations. For example, the following matrix multiplication diagram A B
Rd1 d2

can be interpreted differently
depending on what we choose the shapes of A, B and the resulting matrix to be:

• if A ∈ Rd1×R, B ∈ RR×d2 and the result is of size d1 × d2, then the diagram represents the product AB,

• if A ∈ RR×d1 , B ∈ RR×d2 and the result is of size d1 × d2, then the diagram represents the product ATB,

• if A ∈ RR×d1 , B ∈ RR×d2 and the result is of size d2 × d1, then the diagram represents the product BTA,

• ...

Therefore, one should be mindful when translating tensor network diagrams into mathematical formulations. But this
is also waht makes tensor networks very useful! When we are working with the diagrams, rather than mathematical
expressions, we do not need to care about e.g. transposes...

Contracting two legs of the same node. As explained previously, any two legs of the same dimension can be
connected to form an edge in a tensor network, even two legs corresponding to the same node. Consider for example a
5th order tensor T ∈ Rd1×d2×d3×d2×d4 . Since its 2nd and 4th modes have the same dimension, we can contract them
together. Since the resulting tensor network has 3 dangling legs, it represents a 3rd order tensor:

d2d1 d3 d2 d4

T ∈ Rd1×d2×d3×d2×d4 ,

i1 i3

d2

i4

T =
d2∑

i2=1
T i1,i2,i3,i2,i4 ,

d1 d3

d2

d4

T ∈ Rd1×d3×d4 .

When contracting two legs of an Nth order tensor, the resulting tensor is of order N − 2. This is closely related to the
notion of partial trace that we will present later.

7

1.2 Inner Product, Outer Product, Trace and Norm
In this section, we use tensor networks to show how the classical notions of inner product, outer product, trace and
norm can be generalized to higher order tensors.

Inner product Similarly to the classical inner (euclidean) product between vectors, the inner product of two N -th
order tensors S, T ∈ Rd1×···×dN is the sum of the products of their entries:

⟨S, T ⟩ =
d1∑

i1=1
· · ·

dN∑
iN =1

Si1...iN
T i1...iN

.

In a tensor network diagram, the summation over all dimensions is obtained by connecting all the legs of the two tensors.
This results in a tensor network with no free legs, representing a scalar. For example, for vectors a ∈ Rd×1, b ∈ Rd×1

we have

⟨a, b⟩ =
d∑

i=1
aibi = a b

d
, (6)

and for two 3rd order tensors S, T ∈ Rd1×d2×d3 we have

⟨S, T ⟩ =
d1∑

i1=1

d2∑
i2=1

d3∑
i3=1

Si1i2i3T i1i2i3 = S T

d1

d2

d3

.

In this book, we will focus only on real valued tensors but the tensor network formalism can easily be adapted to
complex valued ones. For example, if the two tensors were complex valued, one would have to take the conjugates of
the entries of the second tensor, which could be indicated in the tensor network by having the node T ∗ (componentwise
conjugate) instead of T .

Outer product Recall that the outer product of two vectors u ∈ Rm, v ∈ Rn is the m × n rank one matrix
uv⊤. This operation can be generalized to any number of tensors. For example, the outer product of N vectors,
a1 ∈ Rd1 , · · · , aN ∈ RdN is the tensor of order N defined by

(a1 ◦ a2 ◦ · · · ◦ aN)i1,i2,··· ,in
= (a1)i1(a2)i2 · · · (aN)iN

for all i1 ∈ [d1], · · · , iN ∈ [dN].

Such a tensor is called a rank one tensor. The diagram below illustrates the outer product of N vectors:

a1 ◦ a2 ◦ · · · ◦ aN = a1 a2 aN

d1 d2 dN

· · · ∈ Rd1×···×dN .

As a special case, for N = 2, we have a1 ◦ a2 = a1aT
2 ∈ Rd1×d2 . As we see in the tensor network diagram of the outer

product, there are no shared edges, which indeed reflect that there are no contraction (summation) happening in an
outer product. The notion of outer product can naturally be extended to higher order tensors. Let A ∈ Rm1×···×mp and
B ∈ Rn1×···×nq . The outer product of A and B is the tensor of order p + q defined by

(A ◦B)i1,i2,··· ,ip,j1,j2,··· ,jq = Ai1,i2,··· ,ipBj1,j2,··· ,jq .

Like for vectors, the tensor networks of the outer product is simply obtained by juxtaposing the corresponding nodes
without adding any edge:

A ◦B = A
m1 mp

m2

B
n1 nq

n2

∈ Rm1×···×mp×n1×···×nq .

More generally, for any arbitrary number of tensors with arbitrary orders, the tensor network diagram of their outer
product is obtained by simply placing them next to each other, e.g., for T ∈ Rd1×d2×d3×d4 , A ∈ Rm×n and v ∈ Rp

A ◦ T ◦ v = A
nm

T v
d3

d2

d4

d1 p
∈ Rm×n×d1×d2×d3×d4×p,

8

is defined element-wise by (A ◦ T ◦ v)i1i2j1j2j3j4k = Ai1i2T j1···j4vk, where i1 ∈ [m], i2 ∈ [n], jl ∈ [dl] for l ∈ [4]
and k ∈ [p].

In the proposition below we show a simple visual proof of the fact that inner products of outer products are products
of inner products.

Proposition 1. Let X , T ∈ Rd1×d2×···×dN with X = a1 ◦ a2 ◦ · · · ◦ aN and T = t1 ◦ t2 ◦ · · · ◦ tN , then
⟨X , T ⟩ =

∏N
n=1⟨an, tn⟩.

Proof.

⟨X , T ⟩ =
〈

a1 a2 aN

d1 d2 dN

· · · , t1 t2 tN

d1 d2 dN

· · ·
〉

=
a1 a2 aN

t1 t2 tN

d1 d2 dN· · · =
N∏

n=1
⟨an, tn⟩

Edge of dimension one = no edge. Note that in tensor network diagrams, an edge of size one is equivalent to having
no edge. For example, in the matrix multiplication, if the contraction edge is of size one, it is equivalent to the outer
product of vectors:

A ∈ Rp×1, B ∈ R1×q, (AB)ij = A B
1i j

=
1∑

k=1
Ai1B1j = a b

i j
= (a ◦ b)ij

where a is the unique column of A and b the unique row of B.

Trace. The trace operation is a special case of tensor contraction applied on square matrices. In tensor networks, the
trace is naturally represented by a loop (self-edge) connecting the two legs of the matrix:

A ∈ Rd×d, tr(A) =
d∑

i=1
Aii = A

d

.

Since there are no free legs, it is consistent with the fact that the trace is a scalar. Tensor networks diagrams offers a
very simple proof of the invariance of the trace under cyclic permutation. Let’s start with the trace of the product of two
matrices A ∈ Rd×R and B ∈ RR×d. As we explained before, the way the graph of a tensor network is drawn, only the
graph structure is important. This allows us to see that

tr(AB) = A B
R

d

=
A

B
Rd = B A

R

d

= tr(BA),

and similarly for three matrices A ∈ Rm×n, B ∈ Rn×p, C ∈ Rp×m, we have

tr(ABC) = A B C
n p

m

=
A

B C

mn

p

= C A B
m n

p

= tr(CAB).

Note that the equalities between the tensor network diagrams are trivial: we just changed the nodes’ position without
changing the underlying graph’s structure. We thus simply interpreted the same diagram in two ways, leading to a less
trivial equality between tr(ABC) and tr(CAB).

9

Partial traces The partial trace is a common operation used in particular in the context of modeling many-body
quantum systems where density matrices of subpart of a system are obtained by performing a partial trace of the
density matrix of the whole system. Without delving into the specifics of quantum systems, consider a square matrix of

dimension d1d2 × d1d2 which we interpret as a 4th order tensor
d1 d2

d1 d2

T . The partial trace of T over the subspace

Rd1 is the d2 × d2 matrix obtained by “tracing out” the d1 dimension by connecting the corresponding legs:
d2

d2

d1 T .

Similarly, the partial trace of T over the subspace Rd2 is the d1 × d1 matrix
d1

d1

d2T .

Tensor Frobenius Norm. The Frobenius norm of a tensor A ∈ Rd1×···×dN is the square root of the sum of its
squared elements (i.e., the square root of the inner product with itself). In tensor networks, the norm of a 3rd-order
tensor A ∈ Rd1×d2×d3 is represented as

∥A∥2
F = ⟨A, A⟩ =

d1∑
i1=1

d2∑
i2=1

d3∑
i3=1

A2
i1i2i3

= A A

d1

d2

d3

.

It is a direct and natural generalization of the matrix Frobenius norm:

∥A∥2
F = tr(AAT) = tr(ATA) = A A

n

m

.

Frobenius norm of outer products. Using tensor networks, it is almost trivial to show that the Frobenius norm of an
outer product is equal to the product of the Frobenius norms. E.g., for A ∈ Rm×n and T ∈ Rd1×d2×d3 , we have

m n d1 d2 d3

A ◦ T =
nm

A
d1 d2 d3

T

and thus

∥A ◦ T ∥2
F =

∥∥∥∥∥ m n d1 d2 d3

A ◦ T

∥∥∥∥∥
2

F

= m n d1 d2 d3

A ◦ T

A ◦ T
= nm

A

A
d1 d2 d3

T

T
= ∥A∥2

F ∥T ∥
2
F .

Example We conclude this section with a last example showing how the tensor network graphical notations is very
useful for representing complicated operations on tensors:

AS

T

A

R
R

R

k

R

R

j l

i =
R∑

r1=1

R∑
r2=1

R∑
r3=1

R∑
r4=1

R∑
r5=1

Sir1r2Ar2r3r5T iklr1r3r4Ar4r5 = H

j

l

i k
. (7)

1.3 Copy Tensors (Hyperedges)
One sometimes needs to represent contractions between more than two indices. Consider for example the following
contraction between there vectors to obtain a scalar:

∑d
i=1 aibici. This operation can be depicted in tensor networks

using a special tensor called copy tensor. The copy tensor is equivalent to a Kronecker delta, i.e. a hyper-diagonal
tensor with ones on the diagonal and zeros elsewhere, and is represented as a black dot in tensor network diagrams.

10

E.g., the copy tensor is defined element-wise as




ijk

= δijk =
{

1 if i = j = k

0 otherwise
.

Using the copy tensor, the 3-way contraction mentioned above can be represented as

a b

c

d d

d

=
d∑

i,j,k=1
δijkaibjck =

d∑
i=1

aibici.

We now give a more formal definition of the copy tensor of arbitrary order N .

Definition 1. The N-th order copy tensor
d d

d

is the tensor of shape d× d · · · × d︸ ︷︷ ︸
N times

defined by

d d

d

=
d∑

i=1
ei ◦ ei ◦ . . . ◦ ei︸ ︷︷ ︸

N times

,

where e1, e2, . . . , ed are the vectors of the canonical basis of Rd.

The name copy tensor comes from the fact that one can "copy" the canonical vectors by contraction with the copy

tensor. Indeed, let ei ∈ Rd be a canonical basis vector, then one can check that ei
d d

d

= ei ei

dd

. Here is a

shot proof of this fact:

ei
k

j

=
∑

s

(ei)sδsjk =
∑

s

δisδsjk = δijk =
{

1 if i = j = k

0 otherwise.
= (eieT

i)j,k = ei ei

kj

.

It is important to observe, that the "copy" property of the copy tensor only holds for canonical basis vector: it is not

true that v d d

d

= v v
dd

for an arbitrary vector v.

Remark 2. In the following, we list some useful properties of copy tensors.

1. The simplest version of the copy tensor is an all one vector, i.e.,
n

=
∑n

i=1 ei = −→1 .
i j

= i j
=

δij =
{

1 if i = j

0 otherwise,
= Iij .

2. Interestingly, when contracting any number of legs from one copy tensor to legs of another copy tensor, the
resulting tensor network is itself a copy tensor (obtained by merging the contracted legs and dots in the tensor
network diagram). For example:

∑
l1

δi1j1k1l1δi2j2k2l1 = = δi1j1k1i2j2k2 = = =
∑
i1

δi1j1k1l1δi1j2k2l2 .

11

3. For any vector v ∈ Rn, let diag(v) ∈ Rn×n denote the diagonal matrix having the entries of v on the
diagonal, and for any matrix A ∈ Rn×n, let diag(A) ∈ Rn denote the vector containing the diagonal entries of
A ∈ Rn×n.

Then, diag(v) =

v

= and diag(A) = A ,

where represents a diagonal matrix.

Proof. For the first claim, for any i, j ∈ [n], we have

v

i j

=
∑

k


i j

k
v

k

 =
∑

k

δijkvk = δijvi = diag(v)ij

For the second claim, for any i ∈ [n], we have

A

i

=
∑
j,k

 A
k j

i

jk
 =

∑
j,k

δijkAkj = Aii = diag(A)i.

4. Consequently we can write from 3 we can write diag(v)diag(u) =

v u

.

1.4 Matrix Factorization in Tensor Networks
Tensor factorizations can be depicted in tensor network diagrams, just like any other operation. In this section, we will
only introduce graphical diagrams of matrix factorizations. More general factorizations on tensors will be covered in
Chapter 3. In tensor networks, factorizing means splitting a single node into multiple nodes, while multiplying refers to
combining multiple nodes into a single node. This process can be clearly illustrated using tensor network diagram:

A B

C D

multiplication−−−−−−−→
←−−−−−−

factorization
M

Therefore, we can represent any matrix decomposition in tensor network diagrams, including the celebrated QR and
singular value decompositions (SVD). However, before presenting these decompositions in tensor network notation, we
need to introduce orthogonal matrices. Higher order tensor orthogonality will be covered in Chapter 3.
Convention.

• The matrix U ∈ Rm×n is left orthogonal if the contraction of its transpose with itself from left yields the identity

matrix (UTU = In), e.g., U U
m nn = = In.

• The matrix V ∈ Rm×n is right orthogonal if the contraction with its transpose from right yields the identity

matrix (VVT = Im), e.g., V V
n mm == Im.

Note that the colored area points towards the identity edge in both left and right orthogonality. That means if the matrix

U is left orthogonal then UUT is not necessary the identity, i.e., U U
n mm ≠= Im.

The QR decomposition and SVD can be presented in tensor network diagrams as follows:

12

• QR Decomposition For A ∈ Rd1×d2 , Q ∈ Rd1×R and R ∈ RR×d2 ,

A
d1 d2 = Q R

Rd1 d2
, where Q Rd1

is the left-orthogonal matrix, i.e., QTQ = IR

• Singular Value Decomposition For A ∈ Rd1×d2 , U ∈ Rd1×R, Σ ∈ RR×R and V ∈ RR×d2 ,

A
d1 d2 = U V

R Rd1 d2
,

where U is the left-orthogonal (UTU = IR), V is the right-orthogonal (VVT = IR) and Σ ∈ RR×R =
represents the diagonal matrices, respectively.

Assuming A has the SVD represented in the previous diagram, we can give a short proof in tensor networks of
tr(ATA) =

∑
i σ2

i , where σi are the singular values of matrix A ∈ Rm×n:

tr(ATA) = A A
n

m

=
U V

R R

U V
R R

m n = R R = tr(Σ2) =
∑

i

σ2
i ,

where we use left and right orthogonal property of matrices U and V.

2 Operations on Tensors
As in the first chapter, a tensor T ∈ Rd1×···×dN can be seen as a multi-dimensional array with size(order) N . An N -th
order or N -way tensor has N modes, where each mode represents one dimension [Kolda and Bader, 2009].

Tensor Fibers. For any mode i (where i = 1, . . . , N), tensor fibers are obtained by keeping all indices fixed except the
i-th one. For example, a matrix column corresponds to a mode-1 fiber, while a matrix row corresponds to a mode-2 fiber.
In a third-order tensor T ∈ Rd1×d2×d3 , we have d2d3 mode-1 fibers, which are vectors of size d1, i.e., T :,i2,i3 ∈ Rd1 ,
for i2 ∈ [d2] and i3 ∈ [d3]. The colon indicates varying the first index while i2 and i3 remain fixed. In simple terms,
fibers are vectors.

Tensor Slices. Slices of a tensor are two-dimensional arrays (matrices) obtained by fixing all but two indices. For
a third-order tensor T ∈ Rd1×d2×d3 , there are horizontal, lateral, and frontal slices denoted by T i1,:,: ∈ Rd2×d3 ,
T :,i2,: ∈ Rd1×d3 , and T :,:,i3 ∈ Rd1×d2 , respectively. Therefore, slices are matrices.

2.1 Permute and Reshape Tensors
Permutation and reshaping are two fundamental operations on tensors.

• Permutation rearranges the indices of a tensor without changing its overall order. A common example of
permutation is the transpose of a matrix.

• Reshaping combines multiple indices into larger ones or splits a large index into multiple smaller indices,
reducing or increasing the total number of indices while preserving the tensor’s overall size

Next, we introduce matricization and vectorization, the two primary reshaping operations on tensors

Definition 2. (Matricizitation) Let T ∈ Rd1×d2×···×dN . A mode-n matricization denoted as T (n) ∈ Rdn×d1d2···dn−1dn+1···dN

for n ∈ [N] is obtained by unfolding T into a matrix by taking all mode-n fibers and stacking them together as columns.
For example, the matricization of a tensor T ∈ Rd1×d2×d3 along mode 1 which is represented by T (1) isT :,11 T :,12 . . . T :,d2d3

 ∈ Rd1×d2d3 .

13

Observe that in this matricization, the two indices corresponding to the second and third modes of T are grouped
together to form a new index that ranges from 1 to d2d3. In tensor network diagrams, we represent such a grouping of
indices by merging the corresponding legs together:

T (1) =

 T
d2d1

d3


(1)

= T
d2

d3

d1 = T
d2d3d1 ∈ Rd1×d2d3 .

As we can see, the grouped legs of the shape
d2

d3
represents an edge of size d2d3 in tensor network diagrams. The

mode-2 and mode-3 matricization T (2) ∈ Rd2×d1d3 and T (3) ∈ Rd3×d1d2 are defined similarly.

Matricization can also be seen as the flattening or unfolding of a tensor into a matrix. In general, the notion of
matricization can be extended to any subset I ⊂ [N] of the modes of T which maps I modes of T to the rows of T
resulting in a matrix T([I]) of size

∏
i∈I di ×

∏
j∈[N]\I dj . For instance, for a 6-th order tensor T ∈ Rd1×···×d6 we

can group the indices as follows

T i1,...,i6 = T
i4

i6

i1

i3i2

i5

I = [3]
−−−−→ T i5

i6

i4

i2

i3

i1

= (T ([3]))i1i2i3,i4i5i6 ∈ Rd1d2d3×d4d5d6 .

Note that in matricization the modes of a tensor are partitioned into two sets. The indices i1, i2, · · · , iI of a tensor
are mapped to the row with index j = ir1ir2 · · · irI

of T where j = 1 +
∑I

l=1

[
(irl
− 1)

∏l−1
m=1 Irm

]
and to the

column k = ic1ic2 · · · ic([N]\I) = 1 +
∑[N]\I

n=1

[
(icn
− 1)

∏n−1
s=1 Irs

]
[Kolda, 2006, Kolda and Bader, 2009]. Likewise,

converting a tensor to a matrix, we can also convert a tensor to a vector, which is called vectorization, and it is a special
case of matricization.

Definition 3. (Vectorization) Let T ∈ Rd1×d2×···×dN . The vectorization of T denoted as vec(T) ∈ Rd1d2···dN is a
vector obtained by concatenating its mode-1 fibers. For example the vectorization of a tensor T ∈ Rd1×d2×d3 is given
by:

vec(T) = [T :11T :12 · · ·T :d2d3]T = T
d1

d2

d3

∈ Rd1d2d3 .

We can also see vectorization as a flattening operation that converts a tensor of any order into a vector. Likewise, in

matricization, the edge of the shape
d1

d2

d3

presents an edge of size d1d2d3. In general, throughout this manuscript,

convergent edges represent an edge whose size is the product of the sizes of all associated edges. Note that the
vectorization of a tensor is equal to the vectorization of mode-1 matricization of the tensor, i.e., for T ∈ Rd1×d2···×dN ,
vec(T) = vec(T (1)).

2.2 Products
Tensors can be multiplied using different operations, similar to contraction for matrix multiplication, as discussed in
Section 1.1. In this section, we provide graphical illustrations of different product operations.

Mode-n Tensor Product. Mode-n products, where a tensor is multiplied by a matrix along a specific mode can be
seen as a generalization of matrix products. These include mode-n products between tensors and matrices, as well as
tensors and vectors.

1. Mode-n product (matrix). The mode-n product of a tensor X ∈ Rd1×···×dN with a matrix M ∈ Rm×dn

denoted as X ×n M ∈ Rd1×···×dn−1×m×dn+1×···×dN is defined as the contraction of a tensor with a matrix

14

along mode-n of the tensor and mode-2 of the matrix, i.e.,

X ×n M =

M

X
d1

d2

dN

dn

m

∈ Rd1×···×dn−1×m×dn+1×···×dN

The operation contracts the tensor’s n-th mode with the matrix’s second mode, replacing the original dimension
dn with a new dimension m. For A ∈ Rdn×n, B ∈ Rdm×m and X ∈ Rd1×···×dN with distinct modes n ̸= m,
the order of multiplication does not matter, i.e.,

X ×n A×m B = X

A
B

d1 dN

dm
dn

n
m

= X ×m B×n A, For (n ̸= m).

However, if m = n and A ∈ Rn×dn and B ∈ Rp×n then (X ×n A)×n B = X ×n (BA). The mode-n tensor
product can be seen as a generalization of matrix multiplication, i.e.,
Let A ∈ Rm×n, B ∈ Rp×n and C ∈ Rd×m, then

A×2 B = A B
nm p

= ABT ∈ Rm×p.

A×1 C = C A
md n = CA ∈ Rd×n.

Lastly, we have the following proposition on mode-n tensor multiplication:

Proposition 3. Let X ∈ Rd1×···×dN and M ∈ Rm×dn then (X ×n M)(n) = MX (n).

Proof. We show this identity for the special case n = 2 and N = 3. The extension to the general case is
straightforward. We have

(X ×2 M)(2) =
(

XM
d2m d1

d3

)
(2)

= XM
d2m d1

d3

= MX (2) ∈ Rm×d1d3 .

2. Mode-n product (vector). The mode-n product of a tensor X ∈ Rd1×···×dN with a vector v ∈ Rdn , is denoted
by X ×n v and is a tensor S ∈ Rd1×···×dn−1×dn+1×···×dN . The result is a tensor of order N − 1. It can be
pictured in a tensor network diagram as

X ×n v =

v

X
d1

d2

dN

dn

∈ Rd1×···×dn−1×dn+1×···×dN .

Note that, in mode-n vector multiplication, unlike mode-n matrix multiplication, the order of multiplication
matters because it affects intermediate results. Let X ∈ Rd1×···×dm×···×dn×···×dN and a ∈ Rdn , b ∈ Rdm , then
X ×n a×m b ̸= (X ×m b)×n a, as mode-n vector multiplication drops the m-th dimension [Bader and Kolda,
2006].

Next, we introduce the Kronecker product, as well as the Khatri-Rao and Hadamard products.

15

Kronecker product Let A ∈ Rm×n and B ∈ Rp×q then the Kronecker product, A⊗B ∈ Rmp×nq is defined by

A⊗B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

. . .
...

am1B am2B . . . amnB

 (8)

In tensor networks, the Kronecker product is represented by the following diagram:

A⊗B =
A

B
mp nq

. (9)

As one can see from this diagram, the Kornecker product of two matrices is nothing else than a reshaping of their outer
products. More generally, the Kronecker product can be defined for any two tensors with the same order. It is obtained
by grouping together and in order each pair of legs of the two tensors, e.g.,

A⊗B = A
m1 mp

m2

⊗ B
n1 np

n2

= A⊗B

m1n1m2n2 mpnp
. . .

∈ Rm1n1×···×mpnp .

Remark 4. In the following, we list some useful properties of the Kronecker product.

1. Kronecker product is not commutative, i.e., A⊗B ̸= B⊗A

2. I⊗A =


A 0 . . . 0
0 A . . . 0
...

...
. . .

...
0 0 . . . A

 is a block diagonal matrix.

3. The Kronecker product of two tensors of the same order results in a tensor of the same order, while their outer
product produces a tensor with double the order.

4. By reshaping the Kronecker product A⊗B, the outer product A ◦B can be obtained.

5. Kronecker product of copy tensors is while the outer product of copy tensors is , where
it reveals that they are not equal, but reshaping of one another.

6. The Kronecker product of two identity matrices is another identity matrix, i.e., = . In general,
the legs of a Kronecker product can be represented as straight lines, with their size corresponding to the product
of the sizes of the respective legs.

7. Kronecker product has a mixed product property, i.e., (A⊗B)(C⊗D) = AC⊗BD where A ∈ Rm×n, B ∈
Rp×q, C ∈ Rn×d and D ∈ Rq×k

Proof.

(A⊗B)(C⊗D) =
A C

B
dk

D

nq

mp

=
A C

B
dk

D
mp

n

q

= AC⊗BD.

16

As a special case, we can see (A⊗ I)(I⊗B) = A⊗B.

8. As we can see in the derivation above, it is often useful to reshape

p n

m q as
pm nq

and vice
versa when dealing with identities involving Kronecker products.

9. For A ∈ Rm×m and B ∈ Rn×n, we have the equality tr(A⊗B) = tr(A) tr(B), which can easily be proved
by the following diagram:

tr(A⊗B) =
A

B
= tr(A) tr(B).

10. Sylvester Identity
vec(AXB) = (BT ⊗A)vec(X),

where A ∈m×n, X ∈ Rn×p and B ∈ Rp×q.

Proof.

vec(AXB) = vec
(

A X B
n pm q

)
= A X Bn p

m

q
=

X
A B

n p

m q

= (A⊗BT)vec(X).

The Sylvester identity is a useful identity to solve the system of equations of the form AX + XB = C.

Useful relationships exist between the n-mode matrix product, matricization, and Kronecker products, i.e.,

Proposition 5. Let A ∈ Rd1×d2×···×dp , A1 ∈ Rd1×n1 , A2 ∈ Rd2×n2 , . . . , Ap ∈ Rdp×np , then

(A×1 A1 ×2 A2 ×3 A3 ×4 . . .×p Ap)(n) = AnA(n)(A1 ⊗ . . .⊗An−1 ⊗An+1 ⊗ . . .⊗Ap)T

Proof. For p = 3 and n = 1,

(A×1 A1 ×2 A2 ×3 A3)(1) =

 A1

A A2A3
d2

d1

d3

n1

n2n3


(1)

=

A1

A
A2

A3d1 d3

d2

n1

n2n3

=

A1

A
A2

A3d1

n1

n2n3
d3

d2

= A1A(1)(A2 ⊗A3)T.

17

Proposition 6. Let T ∈ Rd1×d2×···×dp and Ai ∈ Rdi×ni for i ∈ [p]. Let m ∈ [p] and recall that T(m) denotes
reshaping the tensor T in a matrix of size d1d2 · · · dm × dm+1...dp by mapping the first m indices to rows and the
remaining ones to columns. Then,

(T ×1 A1 ×2 A2 · · · ×p Ap)([m]) = (A1 ⊗A2 ⊗ · · · ⊗Am)T([m])(Am+1 ⊗Am+2 ⊗ · · · ⊗Ap)T.

This identity can be extended to arbitrary subsets I ⊂ [p]:

(T ×1 A1 ×2 A2 · · · ×p Ap)(I) =
(⊗

i∈I

Ai

)
T([m])

 ⊗
i∈[p]\I

Ai

T

.

Proof. For p = 6 and I = {1, 2, 3},
T A1

d1 n1

A2

d2

n2

A3
d3n3

A4

d4

n4

A5
d5

n5

A6

d6

n6


({1,2,3})

= T

A1

A2

A3

A4

A5

A6

d6

d4

d3

d1

n3n4n5n1n2n3 .

Khatri-Rao product The Khatri-Rao product is the column-wise Kronecker product [Smilde et al., 2005, Bro, 1998].
Let A ∈ Rm×R and B ∈ Rn×R then the Khatri-Rao product of A and B denoted as A⊙B ∈ Rmn×R is defined by

A⊙B =

a1 ⊗ b1 a2 ⊗ b2 . . . aR ⊗ bR

 = A B

R

mn

,

where a1, . . . , aR ∈ Rm are the columns of A and b1, . . . , bR ∈ Rn are the columns of B. In the corresponding tensor
network diagram, the copy tensor represents the fact that the resulting matrix only contains the Kronecker product of
matching columns of A and B.

Remark 7. Some of the Khatri-Rao product properties are listed below:

1. Like the Kronecker product, the Khatri-Rao product is not commutative, i.e., A⊙B ̸= B⊙A.

2. The Khatri-Rao product is associative, i.e., A⊙ (B⊙C) = (A⊙B)⊙C, where A ∈ Rm×R, B ∈ Rn×R and
C ∈ Rs×R.

3. The columns of A⊙B form a subset of the columns of the Kronecker product A⊗B.

Hadamard product Let A ∈ Rm×n and B ∈ Rm×n be matrices of the same dimension, then the Hadamard product
is the matrix A ∗B ∈ Rm×n defined element-wise by

(A ∗B)ij = AijBij .

18

In tensor network diagrams, the Hadamard product can easily be represented using copy tensors:

A ∗B =
m

n

A ∗
m

n

B = A B

m

n

More generally, for any A1 ∈ Rm×n . . . Ad ∈ Rm×n we have

A1 ∗A2 . . . ∗Ad =

A1

A2
...

Ad

nm

Remark 8. We list here some useful properties of the Hadamard product.

• The Hadamard product of two copy tensors is a copy tensor.

• From 2, items 4 and five, we can write v ∗ u =

v u

= diag(v)u

In the following section, we introduce several theorems that are useful for tensor decompositions.

2.3 Useful TN results
Theorem 9. (Rank of matricization of TN) For an arbitrary tensor network, the rank of any matricization is bounded
by the weight of the cut of the graph.

1. For A ∈ Rm×R and B ∈ RR×n, rank(AB) = rank

 A B
m R n

 ≤ R

2. Let T ∈ Rd1×R×R×R, A ∈ RR×R×R×d2 , B ∈ Rd2×d3 and S ∈ Rd3×d4 , then

rank

 T A B S
d1 d2R

R

R

d3 d4

 ≤ R3 and

rank

 T A B S
d1 d2R

R

R

d3 d4

 ≤ d3

cutting edge Any cut of the graph of a tensor network corresponds to one way to express the tensor as a sum of outer
products of tensors. The weight of the cut corresponds to the number of summands. For example:

19

A B
m R n =

R∑
r=1

A B
m r nr =

R∑
r=1

A:,rBr,: =
R∑

r=1
ar ◦ br

where ar are the columns of A ∈ Rm×R and br are the rows of B ∈ RR×n.

3 Tensor Decompositions
Working with high-order tensors is computationally expensive because the number of elements grows exponentially
with the tensor’s order. Tensor decompositions have emerged as powerful and efficient tools to address this issue.
Similar to matrix factorizations, tensor decompositions break down a high-order tensor into smaller components with
lower order and fewer entries, making them easier to work with. However, the notion of rank of a matrix can be
extended in various ways for tensors, each of them associated with a different factorization / decomposition model. In
this chapter, we introduce the most well-known tensor decomposition models.

3.1 CANDECOMP/PARAFAC (CP) Decomposition
The CP decomposition [Hitchcock, 1927] of an N -th order tensor A ∈ Rd1×···×dN decomposes A as the sum of a
finite number of rank-one tensors. Equivalently, it is a linear combination of R rank-one tensors where R is called the
rank of the decomposition:

A =
R∑

r=1
a(r)

1 ◦ . . . ◦ a(r)
N ,

where a(1)
n , . . . , a(R)

n ∈ Rdn for each n ∈ [N].
By grouping all the vectors a(r)

n in factor matrices,

A1 =
(

a(1)
1 . . . a(R)

1

)
∈ Rd1×R, . . . , AN =

(
a(1)

N . . . a(R)
N

)
∈ RdN ×R,

the CP decomposition is concisely noted as A = JA1, · · · , AN K.
In tensor networks, a CP decomposition A = JA, B, CK is represented by

A
d2d1

d3

= A B C
d1 d2 d3

,

where the black dot is the third order copy tensor introduced in Section 1.3.

CP Rank of a Tensor The most fundamental and oldest concept of rank for tensors is the CP rank, first introduced
by [Hitchcock, 1927]. The CP rank of a tensor is defined as the minimum number of rank-one tensors required to
express the tensor as their sum. While this definition is similar to that of matrix rank, the properties of tensor rank differ
significantly from those of matrix rank. From a computational standpoint, one key difference is that, unlike matrix rank,
there is no straightforward polynomial-time algorithm to determine a tensor’s CP rank. In fact, computing the rank of a
tensor is an NP-hard problem [Hillar and Lim, 2013]. There are several variations of tensor rank, each associated with a
specific tensor decomposition. As we progress through this chapter, we will introduce some of these different types of
ranks

Remark 10. We list here some interesting properties of the CP rank and the CP decomposition.

1. From Theorem 9 and Remark 2 (item 3), one can show that if a tensor A admits a rank R CP decomposition,
decomposition, then all its matricizations have a rank upper bounded by R:

20

Proposition 11. If A = JA1, · · · , AN K is rank R CP decomposition of A, then (rank(A))I ≤ R for any
I ⊂ [N].

The following tensor network illustrates this result.

T
d1 d4

d2 d3

=

 A1 A2 A3 A4

R R

d1 d2 d3 d4


({1,2})

= A1 A2 A3 A4

d1d2 d3d4

R R R R

R

=
R∑

r=1


A1 A2 A3 A4

d1d2 d3d4

R R R R

r r


2. The CP rank of a tensor A ∈ Rd1×···×dN can easily be upper bounded as

rankCP(A) ≤ min
n∈[N]

∏
i ̸=n

di.

3. For order 2 tensors A ∈ Rd1×d2 , we can recover the classical notion of rank R factorization.

A =
R∑

r=1
a(r)

1 ◦ a(r)
2 =

(
a(1)

1 . . . a(R)
1

)(
a(1)

2 . . . a(R)
2

)T
.

4. The CP decomposition A = JA, B, CK can be expressed using the Kronecker delta

Ai,j,k =
∑

r1,r2,r3

δr1,r2,r3Ai,r1Bj,r2Ck,r3 ,

as well as with mode-n products (see 2.2)

A = I ×1 A×2 B×3 C

where I is the 3rd order copy tensor.

5. The rank of the second-order tensors (matrices), over the fields R and C is the same. However, for higher order
tensors (N -th order tensors with N ≥ 3) the rank can vary depending on the decomposition field [Kruskal,
1989].

6. The CP of N -th order d-dimensional tensors (d1 = · · · = dN = d) using only O(NdR) parameters instead of
dN . If R is small then the number of parameters can be significantly reduced. Therefore, a smaller CP rank R
results in a more efficient CP decomposition.

The following proposition shows how the mode n matricization of the CP decomposition of a tensor can be
expressed as a Khatri-Rao product

Proposition 12. Let A ∈ Rd1×d2×···×dN . If A = JA1, A2, . . . , AN K, then

A(n) = An

(
A1 ⊙ . . .⊙A(n−1) ⊙A(n+1) ⊙ . . .⊙AN

)T
.

Proof. For N = 3 and n = 1,

A(1) =

 A
d2d1

d3


(1)

=

 A1 A2 A3

R R R

d1 d2 d3


(1)

= A
d1 d2

d3

= A1

A2

A3

Rd1 d2

d3

= A1(A2 ⊙A3)T.

21

3.2 Tucker Decomposition
Tucker introduced the Tucker decomposition which factorizes an N -th order tensor into a smaller tensor and N factor
matrices. In this decomposition, the smaller tensor is called the core tensor [Tucker, 1966]. The Tucker decomposition
consists in N mode-n products (see, e.g., 1) between the core tensor and the factor matrices. Let T ∈ Rd1×···×dN . The
Tucker decomposition of the tensor T is given by T = G×1 U1×2 . . .×N−1 UN−1×N UN , where G ∈ RR1×···×RN

is the core tensor and Ui ∈ Rdi×Ri , i ∈ [N] are the factor matrices. The tuple (R1, R2, · · · , RN), which contains the
dimensions of the core tensor along all its modes, is called the Tucker (or multilinear) rank of T . It is not difficult to
show that the factor matrices Ui ∈ Rdi×Ri can always be chosen to be unitary (see item 6 in Remark 13 below).

Remark 13. We list here some interesting properties of the Tucker decomposition and the HOSVD algorithm.

1. The Tucker decomposition of a fourth-order tensor T ∈ Rd1×···×d4 can be illustrated using tensor networks
notation as follows.

T
d1 d4

d2 d3

=

G

U1 U2 U3 U4

R1
R2 R3

R4

d1 d2 d3 d4

.

2. Computing The Tucker Decomposition. The basic idea of the Tucker decomposition is to find the Rn leading
left singular vectors in mode n, independently of the other modes. This algorithm, known as Higher-Order SVD
(HOSVD), is depicted below. We begin by using the fact that an SVD exists for any mode-n matricization of the
tensor T ∈ Rd1×···×dN . For simplicity, we illustrate this process for N = 4,

T

d1

d2

d4 d3 mode-1 matricization−−−−−−−−−−−−−−→ T
d2

d4

d3
d1 → U1 Σ1 V1 d3

R1

d1

R1
d2

d4

Keep U1 and discard Σ1VT
1 .

T

d1

d2

d4 d3 mode-2 matricization−−−−−−−−−−−−−−→ T
d2

d3

d1

d4

→ U2 Σ2 V2 d3
R2

d2

R2
d1

d4

Keep U2 and discard Σ2VT
2 .

...

Construct the tensor G ∈ RR1×···×R4 by performing a mode-n product with the transpose of the retained factor
matrices for each corresponding mode (for n ∈ [4]), i.e.,

T ×1 UT
1 ×2 . . .×4 UT

4 =

T

U1 U2 U3 U4

d1
d2 d3

d4

R1 R2 R3 R4

= G
R4

R2 R3

R1

The core tensor G ∈ RR1×···×R4 along with the factor matrices U1, . . . , U4 forms a Tucker decomposition of
the tensor T . If all the SVDs of the matricization of T are exact, the resulting Tucker decomposition will be
exact as well. When using truncated SVDs, the overall approximation error of the Tucker decomposition can be
expressed as a function of the errors made in each truncated SVD (see [De Lathauwer et al., 2000]).

3. By above derivation we can conclude that vec(G) = (U1 ⊗ · · · ⊗UN)vec(T)

Proof.

4. If T = G ×1 U1 ×2 . . .×N−1 UN−1 ×N UN with all the Ui being orthogonal, then ∥T ∥F = ∥G∥F .

22

5. If we don’t enforce any orthogonality constraints on the factor matrices and fix the core tensor to be a copy tensor,

G
R4

R2 R3

R1 = R4

R2 R3

R1
, then the CP decomposition is recovered.

6. If T = G ×1 A1 ×2 A2 ×3 A3 ×4 A4, with A1, A2, A3 and A4 not necessarily orthogonal, then there exists G̃
(of the same size as G) and Q1, Q2, Q3 and Q4 orthogonal such that T = G̃ ×1 Q1 ×2 Q2 ×3 Q3 ×4 Q4.

Proof. By performing QR decomposition on each factor matrix, we obtain

T
d1 d4

d2 d3

=

G

A1 A2 A3 A4

R1
R2 R3

R4

d1 d2 d3 d4

=

G

R1 R2 R3 R4

Q1 Q2 Q3 Q4

R1
R2 R3

R4

R1 R2 R3 R4

d1 d2 d3 d4

=

G̃

Q1 Q2 Q3 Q4

d1 d2 d3 d4

R1
R2 R3

R4

.

7. The Tucker rank of a tensor T is determined by the rank of its matricizations, i.e., rank(T (i)) for i ∈ [N]
[De Lathauwer et al., 2000].

8. For an N -th order d-dimensional tensor, the number of parameters in its Tucker decomposition isO(RN + NdR)
assuming R1 = · · · = RN = R and d1 = · · · = dN = d.

9. We conclude this section by showing how the mode n matricization of the Tucker decomposition of a tensor can
be expressed as a Kronecker product.

Proposition 14. Let A ∈ Rd1×d2×···×dN . If A = G ×1 U1 ×2 . . .×N UN then

A(i) = UiG(i)
(
U1 ⊗ . . .⊗U(i−1) ⊗U(i+1) ⊗ . . .⊗UN

)T
.

Proof. For N = 3 and n = 1 assuming R1 = R2 = R3 = R,

A(1) =

 A
d2d1

d3


(1)

=

 U1 U2 U3

G
R R R

d1 d2 d3


(1)

= A
d1 d2

d3

= U1

U2

U3

G
R

R

Rd1 d2

d3

= U1G(1)(U2 ⊗U3)T.

3.3 Tensor Train (TT) Decomposition
The Tensor Train (TT) decomposition [Oseledets, 2010] is another popular tensor factorization model. It decomposes
an N -th order tensor into N smaller third-order tensors. A rank-(R1, . . . , RN−1) tensor train decomposition of a
tensor S ∈ Rd1×···×dN factorizes it into a product of N third-order tensors, Gn ∈ RRn−1×dn×Rn for n ∈ [N] (with
R0 = RN = 1):

Si1,··· ,iN
=

∑
r0,··· ,rN

N∏
n=1

Gn(rn−1, in, rn) = TT((Gn)N
n=1),

23

for all i1 ∈ [d1], · · · , iN ∈ [dN], where each rn ranges from 1 to Rn, for n ∈ [N]. The TT-rank of S is the smallest
(R1, R2, . . . , RN−1) such that S = TT((Gn)N

n=1), where TT((Gn)N
n=1) represents a TT decomposition with core

tensors G1, . . . , GN . The rank can be viewed as a parameter that controls the expressivity of the TT decomposition.
That is with a sufficiently large rank, a TT decomposition can represent any arbitrary tensor. The TT decomposition can
be represented in tensor networks, e.g., for a 4-th order tensor:

S
d1 d4

d2 d3

= G1 G2 G3 G4
d2 d3 d4d1

R R R
.

In the physics community, the TT decomposition is also known as a Matrix Product State (MPS), the intermediate
edges are referred to as bond dimensions, and the free legs are called physical dimensions. Next, we explain how
to construct the TT tensor from a tensor S ∈ Rd1×···×dN using singular value decomposition (SVD), known as the
TT-SVD algorithm [Oseledets, 2010]. The following theorem establishes the existence of a minimal tensor train
decomposition for any arbitrary tensor, and its proof is constructive and outlines the TT-SVD algorithm.

Theorem 15. (Computing (Orthogonal) Tensor Train Decomposition.) For any S ∈ Rd1×···×dN , let S([n]) ∈
Rd1...dn×dn+1...dN be the matricization obtained by mapping the first n modes of S to the rows of S. Then the TT rank
of S, (R1, · · · , RN−1) is given by Rn = rank (S([n])) for all n ∈ [N − 1].

Proof. Let Rn = rank (S([n])). We construct the TT decomposition of 4th order tensor S ∈ Rd1×···×d4 by successive
QR decomposition as follows.

1.

S

d1

d2

d4 d3 mode-1 matricization−−−−−−−−−−−−−−→ S
d2

d4

d3
d1 QR−→ Q1 R1

d1

R1
d2

d4

d2 Keep Q1 and resume with R1.

2.

R1
R1

d2

d4

d3 reshape
−−−−→ R1

R1d2

d4

d3 QR−→ Q2 R2

R1d2

R2

d4

d3 Keep Q2 and resume with R2.

Note that we need to show that rank(R1) ≤ R2 for the rank R2 exact QR decomposition of R1 to exist. First
observe that since rank(S([2])) = R2, there exist A ∈ Rd1d2×R2 , B ∈ inRR×d3d4 such that:

3.

S

d1

d2

d4 d3 mode I = [2] matricization
−−−−−−−−−−−−−−−−−−→ S

d2

d4

d3

d1

rank R2 factorization−−−−−−−−−−−−−−→ A B
R2

d1

d2 d3

d4

By contracting Q1 with the first-mode matricization S(1) and using the above factorization with reshaping A to
A ∈ Rd1×d2×R2 , we obtain

Q1 S
d1R1

d3

d4

d2

= Q1 A B
R2d1

R1

d2

d3

d4

= ,

showing that the reshaping of Q1S(1) into a R1d2 × d3d4 matrix has rank at most R2. At the same time, since
Q1 is orthogonal and comes from the QR factorization of S(1), have that Q1S(1) is equal to R1:

Q1 S
d1R1

d3

d4

d2

= Q1 Q1 R1

R1
d1

d2

d4

d3
R1 = R1

d2

d4

d3
R1

,

showing indeed that the rank of R1 after being reshaped into a R1d2 × d3d4 matrix is at most R2.

24

By repeating steps 2 and 3 in this fashion for R2 and R3, we ultimately obtain a TT decomposition with the rank
(R1, R2, R3) where Rn = rank(S([n])) for n ∈ [3], i.e.,

S

d1

d4

d2d3 = Q1 Q2 Q3
R1

d1 d2

R2

d3

R3

d4

R3
.

resulting in a TT decomposition where all cores are orthogonal except for the last core, which is R3.

We can also compute an orthogonal TT decomposition through the truncated SVD which is called the TT-SVD
algorithm (see e.g., [Oseledets, 2010]).
Now, we define the notions of left orthogonality, right orthogonality and the canonical form of the TT decomposition.

Definition 4. A core tensor An ∈ RRn−1×dn×Rn for n ∈ [N] is left-orthogonal if (An)T
(3)(An)(3) = IRn

and
right-orthogonal if (An)(1)(An)T

(1) = IRn−1 .

Definition 5. The TT decomposition TT((An)N
n=1) ∈ Rd1×···×dN is said to be in canonical format with respect to a

fixed index j ∈ [N] if all cores with n < j are left-orthogonal and all cores with n > j are right-orthogonal, e.g., the
following TT decomposition is in canonical form w.r.t. its 3rd core tensor:

A1

d1

A2

d2

A3
d3

A4

d4

A5

d5

R1 R2 R3 R4
.

The cores at the left side of A3 are left-orthogonal and the cores at the right are right-orthogonal. The core A3 is
called the center of orthogonality. Note that any TT decomposition can efficiently be converted to a canonical form w.r.t.
any index j ∈ [N] by performing a series of QR decompositions on the core tensors [Holtz et al., 2012, Evenbly, 2018].

Another popular way to obtain a TT decomposition is using Alternating Least Square (ALS) method:

Computing TT with Alternating Least Square (ALS) The single-site Tensor Train Alternating Least Squares
(TT-ALS) method [Holtz et al., 2012] starts with a TT decomposition in canonical form, initialized with a crude
approximation (e.g., with random cores, or using TT-SVD). In the first step, the core A1 of the decomposition is
non-orthogonal. During sweeps from left to right (respectively right to left), the algorithm keeps all cores fixed
except for the nth one, An and optimizes it accordingly. After updating An, a QR decomposition is applied, and the
non-orthonormal part is merged to the left (or right, depending on the direction of the sweep), a step which is called
core orthogonalization. A Half-sweep of TT-ALS is presented above. In each non-QR step, the fully colored core is

A1

d1

A2

d2

A3

d3

A4

d4

A5

d5

R1 R2 R3 R4
step: 1

A1

d1

A2

d2

A3

d3

A4

d4

A5

d5

R1 R2 R3 R4
QR

A1

d1

A2

d2

A3

d3

A4

d4

A5

d5

R1 R2 R3 R4
step: 2

A1

d1

A2

d2

A3

d3

A4

d4

A5

d5

R1 R2 R3 R4
QR

A1

d1

A2

d2

A3
d3

A4

d4

A5

d5

R1 R2 R3 R4
step: 3

optimized and in each QR step the non-orthogonal component (depicted by a black circle) is absorbed into the next
core. This procedure repeats until reaching the right side of the decomposition, and then the same procedure is repeated
from the right until reaching the left side (not demonstrated in this figure).

In the next section, we first introduce the TT-matrix, also known as the Matrix Product Operator (MPO), and then
demonstrate how to perform operations efficiently in the TT format.

25

3.4 Efficient Operations in TT Format.
Matrix Product Operator (MPO) As a generalization of the TT decomposition, we introduce the Matrix Product
Operator (MPO) [Oseledets, 2010]. An MPO, also known as a TT-matrix, is a chain of four-way tensors used to represent
a matrix. It was originally developed to describe operators acting on multi-body quantum systems. Simply put, an MPO
is a method of representing a matrix using tensors. Suppose that we have a matrix of size A ∈ RI1I2...IN ×J1J2...JN .
For n ∈ [N], let An ∈ RRn−1×In×Jn×Rn with R0 = RN = 1 and R1 = · · · = RN−1 = R. A rank R MPO
decomposition of A is given by

Ai1i2···N ,j1j2...jN
= (A1)i1,j1,:(A2):,i2,j2,: . . . (AN−1):,iN−1,jN−1,:(AN):,iN ,jN

,

for all indices i1 ∈ [I1], · · · , iN ∈ [IN] and j1 ∈ [J1], . . . , jN ∈ [JN]; we will use the notation A = MPO((An)N
n=1)

to denote the MPO format. The MPO decomposition for a matrix A ∈ RI1I2I3×J1J2J3 in a tensor network notation can
be represented by:

A
I1I2I3 J1J2J3 = A1 A2 A3

I2 I3I1

R R
J2 J3J1

.

Mat-vec Product in MPO. The product between a matrix A ∈ RI1I2I3×J1J2J3 and a vector a ∈ RI1I2I3 given in TT
format can be computed efficiently in the TT format directly, e.g.,

Aa
I1I2I3 J1J2J3 = A1 A2 A3

I2 I3I1

R R
J2 J3J1

G1 G2 G3
S S

= H1 H2 H3
RS RS

J1 J2 J3

, (10)

where the final tensor is a TT vector of rank RS since multiplication of two TT tensors increases the rank to the
multiplication of ranks. As one can see, when performing operations in the TT format, the TT ranks may increase.
TheTT-rounding algorithm [Oseledets, 2010] can be used to reduce the ranks when needed (at the cost of some
approximation error).

TT-rounding During operations in TT format (e.g., summation, multiplication, etc.), the rank of the resulting tensor
tends to increase. To control this growth while maintaining accuracy, we can reduce the rank. This is done by taking the
TT tensor obtained from Eqn. (10) and applying SVD to each core. To obtain the rank R̃ ≤ RS TT decomposition, we
can apply truncated SVD with rank R̃ on each core of the tensor obtained from Eqn. (10):

H1 H2 H3
RS RS

J1 J2 J3

rank R̃ truncated SVD on the first core−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Q1
R̃

V
R̃ H3H2

RS RS

J1 J2 J3

merge & apply rank R̃ SVD︷ ︸︸ ︷

Q1 Q2 V H3
R̃ R̃ R̃ RS

J1 J2 J3

merge & apply rank R̃ SVD︷ ︸︸ ︷
−→ Q1 Q2 Q3

R̃ R̃

J1 J2 J3

.

One can show that this procedure is exactly equivalent to performing TT-SVD on the tensor TT(G1, G2, G3).

Inner Product As mentioned in Section 1.1, for both tensors and vectors, the inner product is obtained by connecting
all corresponding indices. Suppose that we have two fourth order tensors T = TT((Gn)N

n=1), T̃ = TT((G̃n)N
n=1) ∈

Rd1×...×d4 in the TT format. Then, the inner product can be computed efficiently, e.g.,

⟨T , T̃ ⟩ =
G1 G2 G3 G4

G̃1 G̃2 G̃3 G̃4

d1 d2 d4 d1

R R R

R R R

= A1 A2 A3 A4
R

R

R

R

R

R

= A1 A2 A3 A4
R2 R2 R2

. (11)

26

We can see that this representation is correct by simply using the definition,

⟨T , T̃ ⟩ =
d1∑

i1=1
. . .

d4∑
i4=1

T i1, ... i4 T̃ i1, ... i4 .

Observe that the complexity of computing the inner product of two N -th order tensors in TT format with the process
described in Eqn. (11) is O(NdR4) provided that d1 = · · · = dN = d and R2 = · · · = RN−1 = R. This represents
a significant improvement compared to the standard method, which has a complexity of O(dN). Therefore, the TT
format provides an efficient and practical approach for performing operations on high-dimensional tensors. Moreover,
cores can be contracted in an even more efficient manner, e.g.,

G1 G2 G3 G4
d2 d3 d4d1

R R R

G̃1 G̃2 G̃3 G̃4
R R R

G1 G2 G3 G4
R R R

G̃1 G̃2 G̃3 G̃4R R R

d1 d2 d3 d4→
G1 G2 G3 G4

R R R

G̃1 G̃2 G̃3 G̃4R R R

d1 d2 d3 d4→ →

G1 G2 G3 G4

G̃1 G̃2 G̃3 G̃4

d1 d2 d3 d4

R R R

R R R

→ · · · →
G1 G2 G3 G4

G̃1 G̃2 G̃3 G̃4

d1 d2 d3 d4

R R R

R R R

As we can see above, the complexity of computing the inner product between two vectors of sizeO(dN) can be reduced
to O(NdR3). In general, determining the optimal order of contraction for an arbitrary tensor network is an NP-hard
problem [Chi-Chung et al., 1997].
As expected, several other tensor networks are not covered in this chapter. In the next section, we introduce some of
them, which are notable generalizations of the Tucker and TT decompositions.

3.5 Other decompositions: Tensor Ring, PEPS & Hierarchical Tucker
Tensor Ring Decomposition The Tensor Ring (TR) decomposition is a generalization of the TT decomposition [Zhao
et al., 2016]. Originally introduced in quantum physics, it has recently gained popularity in the machine learning
community [Wang et al., 2017, 2018, Yuan et al., 2018]. While the TR decomposition is known to have some numerical
stability issues, it generally requires less storage and achieves better compression ratios than the TT decomposition in
practice. Let X ∈ Rd1×···×dN be an N -th order tensor. Let X n ∈ RRn−1×dn×Rn for n ∈ [N] be the core tensors. For
simplicity let R0 = R1 = · · · = RN−1 = RN = R. A rank R tensor ring decomposition of the tensor X is given by

X i1,...,iN
=

R∑
r0=1
· · ·

R∑
rn=1

(X 1)r0,i1,r1(X 2)r1,i2,r2 . . . (X N−1)rN−2,iN−1,rN−1(X N)rN−1,iN ,rN
,

for all indices i1 ∈ [d1], · · · , iN ∈ [dN]. The TR decomposition can be represented in a tensor network notation for a
fourth order tensor as follows:

X
d1 d4

d2 d3

= X 1 X 2 X 3 X 4
d2 d3 d4d1

R R R

R

.

As a special case of tensor ring decomposition, we can also obtain a rank-one decomposition by setting the ranks equal
to one:

X
d1 d4

d2 d3

= x1 x2 x3 x4

d2 d3 d4d1

= x1 ◦ x2 ◦ x3 ◦ x4.

27

Projected Entangled Pair States (PEPS) The family of Projected Entangled Pair States (PEPS) have emerged as
one of the generalization of the TT decomposition to higher dimension in quantum physics community [Verstraete and
Cirac, 2004, Orús, 2014]. PEPS are tensor networks structured as two-dimensional arrays of fifth-order core tensors.
Below is the PEPS tensor diagram corresponding to a 4× 4 square lattice:

.

Tree Tensor Networks/ Hierarchical Tucker Decomposition Another tensor network of particular interest is the
Tree Tensor Networks (TTN) or Hierarchical Tucker (HT) decomposition, originally introduced in [Hackbusch and
Kühn, 2009, Grasedyck, 2010]. A key advantage of this tensor network is its higher expressive power compared to
simpler models like the CP decomposition. The tensor network diagram for the HT decomposition of fourth order
tensor is shown below:

.

4 Computing Gradients with Tensor Networks
Optimizing tensor networks in a general setting is a significant challenge across many research areas. While optimization
techniques for two-dimensional matrices have achieved considerable success, extending these methods to tensor
networks in three or more dimensions remains difficult [Liao et al., 2019]. This complexity stems from the high
computational cost of tensor contractions and the lack of efficient optimization algorithms for higher-dimensional
cases. Additionally, manually computing gradients using the chain rule is feasible only for specifically designed and
simple tensor network structures [Wang et al., 2011]. In this chapter, we introduce an elegant and intuitive approach for
efficiently computing higher-order derivatives using tensor network graphical notations efficiently.
In the next section, we first define the classical concepts of gradients and the Jacobian for functions that take vectors as
inputs. We then extend these concepts to functions that take tensors as inputs and produce tensors as outputs.

4.1 Jacobians
We first recall the classical notions of gradient and Jacobian of functions defined over Rn.

Definition 6. For f : Rn → R and g : Rn → Rp the gradient of f and the Jacobian of g at θ ∈ Rn are defined by

∇θf =
[

∂f(θ)
∂θ1

,
∂f(θ)
∂θ2

, . . . ,
∂f(θ)
∂θn

]T
= n ∈ Rn

and
∂g(θ)

∂θ
=
(

∂g(θ)i

∂θj

)
i=1,··· ,p
j=1,··· ,n

= np
∈ Rp×n.

We can naturally extend the notion of Jacobian to functions that take tensors as input, and output tensors (of arbitrary
orders).

28

Definition 7. If f : Rn1×···×nN → Rm1×···×mM , then the Jacobian tensor of f at θ ∈ Rn1×···×nN , is the tensor
∂f
∂θ ∈ Rm1×···×mM ×n1×···×nN defined by

∂f(θ)
∂θ

=
(

∂f(θ)i1,...,iM

∂θj1,...,jN

)
i1∈[m1],··· ,iM ∈[mM]
j1∈[n1],··· ,jN ∈[nN]

=
m1 n1

m2
n2

mM

nN

∈ Rm1×···×mM ×n1×···×nN .

The following theorem demonstrates that first-order derivatives of tensor networks w.r.t. a core tensor can be easily
computed using tensor networks.

Theorem 16. Let T be a tensor given as a tensor network, where G is a core tensor appearing only once in the tensor
network. Then ∂T

∂G is obtained by removing G from the tensor network of T .

The following examples illustrate how Theorem 16 can be applied to tensor networks.

Examples. Let X
d1 d3

d2

= G1 G2

G3

G4
R1

R2 R3

R4

d1 d3

d2

be a tensor network. Observe that we can think of X as a

function of any of the core tensors of its tensor network representation. We can thus naturally ask what the Jacobian of
X is with respect to, e.g., G2 or G4. The previous theorem gives us an easy way to compute these derivatives:

• According to Theorem 16, to find the gradient of X with respect to G2, we need to remove the core G2 from the
tensor network, i.e.,

∂

∂G2


G1 G2

G3

G4
R1

R2 R3

R4

d1 d3

d2


=

G1

G3
G4

d1
R1

R4

d2

R3

d3

R2

.

To understand why this procedure works, we can view the tensor decomposition of X as a matrix-vector product:

Mv = G1

G3 G2

G4

G2d1d2d3

R1

R3

R2

R4

where v = vec(G2) and M is the matrix obtained by matricization

of the remaining part of the tensor network. Using the classical identity for the Jacobian of a linear map, the
expected result is obtained:

∂Mv
∂v = M =

G1

G3

G4

d1d2d3 R1R3R4

R2 ∈ Rd1d2d3×R1R3R4 .

• According to Theorem 16 to find the gradient of X with respect to G4, we need to remove the core G4 from the

29

corresponding tensor network. i.e.,

∂

∂G4


G1 G2

G3

G4
R1

R2 R3

R4

d1 d3

d2


=

G1 G2

G3

R1

R2 R3

R4

d1

d2

d3

.

Observe that the dangling leg of G4 remains in the Jacobian tensor! To understand why this is the case, we can

again view the tensor decomposition of X as a matrix-vector product Mv, such that Mv = G1 G2

G3

G4

R1

R4

d1d2d3

where now v = vec(G4). Taking derivative of this tensor network with respect to v = vec(G4) gives us the
expected result:

∂Mv
∂v = M = G1 G2

G3

R1

d1d2d3

R4 ∈ Rd1d2d3×R4 .

Note that taking the derivative with respect to a tensor removes only the corresponding node from the network,
but leaves its connecting edges (legs) intact.

We now illustrate how Theorem 16 can be used to effortlessly recover classical derivatives and gradient computations.

Re-deriving Classical Identities with Tensor Networks

1. ∂⟨u,v⟩
∂u =

∂

(
u v

)
∂

(
u

) = v = v

2. ∂Ax
∂x =

∂

(
A x

)
∂

(
x
) = A = A

3. ∂xTAx
∂A =

∂

(
A xx

)
∂

(
A

) = xx = x ◦ x

4. ∂ tr(A)
∂A =

∂

(
A

)
∂

(
A

) = = I

5. ∂Ax
∂A =

∂

(
A x

)
∂

(
A

) = x◦ = I ◦ x.

Theorem 16 applies when the tensor with respect to which the derivative is taken appears only once in the network. The
following theorem shows how to handle the case where the tensor appears multiple times.

30

Theorem 17. Let T be a tensor network where G is a core tensor. If G appears k times in the tensor network of T ,
then ∂T

∂G is obtained by summing k copies of the tensor network of T , where a different occurrence of G is removed in
each copy.

The following examples illustrate how Theorem 17 can be applied.

Examples.

• ∂xTAx
∂x =

∂

(
A xx

)
∂

(
x
) = A x + x A = Ax + ATx = (Ax + AT)x

• X ∈ Rn×m, W ∈ Rm×n

∂ ∥XW−Y∥2
F

∂W = ∂ tr(WTXTXW)
∂W =

∂

 W X X W
m n n


∂
(

W
mn
)

= X X W
m n m n + W X X

m nn m = 2XTXW.

We conclude this chapter by presenting several applications of tensor network gradients.

4.2 Applications
There is a wide range of applications for tensor network gradients, we highlight two notable examples here.

We first briefly introduce the notion of loss functions and explain how the chain rule can be easily applied with
expressions involving tensors and Jacobian tensors.

A loss function L : S×S → R≥0 serves to measure the error or cost incurred by a computational model, algorithm,
or decision process when producing the output ŷ ∈ S as the prediction of the ground truth y ∈ S. The goal of many
learning and optimization algorithms is to minimize this loss. One approach is to use the Frobenius norm of the
difference between the predicted output and the ground truth. To minimize the Frobenius norm when both the input and
output are tensors, Jacobians can be used to compute the necessary gradients. Let A ∈ Rd1×d2×d3 be the ground turth
and T ∈ Rd1×d2×d3 be the predicted output. To minimize the loss L = ∥A− T ∥2

F and by using Theorem 16 we can
write:

∂ ∥A− T ∥2
F

∂T = ∂

∂T

(
∥A∥2

F + ∥T ∥2
F − 2⟨A, T ⟩

)
= ∂

∂T

 T T

d1

d2

d3

− 2 A T

d1

d2

d3



=

 T
d2d1

d3

+ T
d2d1

d3

− 2 A
d2d1

d3



= 2

 T
d2d1

d3

− A
d2d1

d3

 .

We are now ready to present the two notable applications of tensor network gradient computations.

• CP Decomposition with Gradient Descent To compute the CP decomposition (see Section 3.1) of an arbitrary
tensor T ∈ Rd1×···×dN one can use gradient descent by defining the Loss function as L = ∥T − JG1, · · · , GN K∥2

F .
Here JG1, · · · , GN K denotes the CP decomposition where G1, · · · , GN are the factor matrices. To optimize
w.r.t. the factor matrices, we can apply gradient descent to the loss function with respect to them. For instance,

31

in the case of N = 3, to compute G1 we can apply the chain rule and write ∂L
∂G1

= ∂L
∂JG1,G2,G3K

∂JG1,G2,G3K
∂G1

,
where ∂L

∂JG1,G2,G3K = 2(T − JG1, G2, G3K) ∈ Rd1×d2×d3 and

∂JG1, G2, G3K
∂G1

= G2 G3

R R R

d1 d2 d3

∈ Rd1×d2×d3×R.

Therefore, by applying first-mode matricization and using the Khatri-Rao product, we obtain:

∂L

∂G1
= ∂L

∂JG1, G2, G3K
∂JG1, G2, G3K

∂G1
= 2(T − JG1, G2, G3K)

G2 G3

R R

d2 d3

R

d1

= 2(T − JG1, G2, G3K)(1)(G2 ⊙G3) = 2(T − JG1, G2, G3K)

G2 ⊙G3

d2d3

d1

R

∈ Rd1×R.

• Machine Learning Without nonlinear activation functions, dense neural networks reduce to a series of matrix
multiplications. However, due to memory constraints, the dense weight matrices of fully connected layers can be
parameterized using tensor factorizations, making them more efficient and easier to work with [Novikov et al.,
2015]. Let W ∈ RP ×D be the weight matrix and x ∈ RD the input vector of a neural network. The output
y ∈ RP is obtained by contracting the weight matrix W with the input vector x. Suppose P = ΠN

i=1pi and
D = ΠN

i=1di. Then by reshaping W and x in tensors we have

Y

p1
p2

pN−1
pN

... =
∑

d1,··· ,dN

Wp1···pN ,d1···dN
X d1···dN

= W X

p1
p2

pN−1
pN

... ...

d1

dN

.

For simplicity, we proceed with the case N = 4. Let W be in the MPO format (see Section 3.4). i.e.,

W = G1 G2 G3 G4

d1 d2 d3 d4

R1 R2 R3

p1 p2 p3 p4

. During the backpropagation step, since we aim to update the weight matrix,

we need to optimize it with respect to all the core tensors. According to the chain rule, this gives: ∂L
∂Gi

= ∂L
∂Y

∂Y
∂Gi

for i ∈ [4], where L denotes the Loss function. For instance, suppose i = 2 and we need to find the derivative of
Y with respect to G2. By applying Theorem 16 we just need to remove G2 from the tensor network to obtain the
result, i.e.,

∂Y
∂G2

=

∂


G1 G2 G3 G4

X

d1 d2 d3 d4

R1 R2 R3

p1 p2 p3 p4


∂G2

=

G1 G3 G4

X

d1 d2 d3 d4

R3

p1 p3 p4

R1 R2

p2

∈ Rp1×R1×p2×R2×p3×p4 .

32

5 Probability Distributions and Random Vectors
In this chapter, we explore one of the most useful applications of tensor networks: their ability to intuitively and
efficiently represent high-dimensional probability distributions. For example, some tensor network decompositions,
such as TT, allow for the efficient encoding of both probability distributions and their marginals [Gardiner and Lopez-
Piqueres, 2024, Glasser et al., 2019]. We start this chapter by showing how tensor networks can be used to efficiently
model probability distributions. We then shift of our focus to studying statistical properties of tensors obtained by
contracting random tensors together. Both parts of this chapter will illustrate how tensor networks can help us easily
derive non-trivial results involving probability distributions and high-order tensors.

5.1 Probability Distributions and Tensor Decompositions
5.1.1 Probability Distributions as Tensors

One of the popular approaches to modeling a probability distribution with a tensor network is to represent the
probabilities directly. Consider a multivariate probability mass function, P(X1, · · · , XN) of N discrete random
variables. This joint probability distribution can be seen as an N -th order tensor with non-negative entries summing to
one:

Definition 8. Let P be a joint distribution over N discrete random variables X1, · · · , XN taking their values
in [d1], [d2], · · · , [dN], respectively. We say that the tensor T ∈ Rd1×···×dN , defined by T i1···iN

= P(X1 =
i1, · · · , XN = iN), represents the probability P, which we denote by T ≃ P(X1, · · · , XN). By construction,
the entries of T are non-negative and sums to one:∑

i1,··· ,iN

T i1,··· ,iN
= T

. . .
d1

d2
dN

= 1,

where is a vector with all ones (see item 1 in Remark 2).

Now that this foundation has been established, marginal and conditional probabilities can be expressed using tensor
network notation.

Marginal Probabilities Let T ∈ Rd1×d2×d3 be the tensor representing the probability distribution P(X1, X2, X3)
then

1. Using the law of total probabilities, the marginal distribution of X2 and X3 can be expressed as

P(X2 = i2, X3 = i3) =
d1∑

i1=1
P(X1 = i1, X2 = i2, X3 = i3) = T

i2 i3

=
d2∑

i1=1
T i1,i2,i3 ,

for all i2, i3. This shows that the tensor representing the marginal distribution can be obtained from a simple
operation on the tensor representing the joint:

(TODO add TNs:)

If [TN of T] ≃ P (X1, X2, X3), then [TN of T contracted with vector of ones] ≃ P (X2, X3),

2. We can similarly express the marginal distribution of X1:∑
i1,i3

T i1,i2,i3 =
∑
i1,i3

P(i1, i2, i3) = P(i2) = T

i2

.

In the following, we use P(i1, · · · , iN) for simplicity to denote the probability P(X1 = i1, · · · , XN = iN). As we
can see, to represent marginals in tensor network notation, we simply need to contract a vector of all ones with the
corresponding legs.
In a similar way we can also represent the conditional probability distributions:

33

Conditional Probabilities Let P(in|i1, · · · , in) denotes the conditional probability of Xn = in given that the
preceding n − 1 random variables are i1, · · · , in−1. For the third order probability tensor T ∈ Rd1×d2×d3 the
conditional probabilities can be presented in tensor network notations:

1. P(i1|i2) = P(i1,i2)
P(i2) =

∑
i3

P(i1,i2,i3)∑
i1,i3

P(i1,i2,i3)
=

T

i2 i3

T

i2

.

2. P(i3|i1, i2) = P(i1,i2,i3)
P(i1,i2) = P(i1,i2,i3)∑

i3
P(i1,i2,i3)

=

T

i1 i2 i3

T

i1 i2

.

5.1.2 Tensor Train Parameterization of Probability Distributions

As we saw in Section 3, working with high-order tensors becomes computationally expensive because the number
of elements grows exponentially with the tensor’s order. This of course also applies for tensors representing joint
probability distributions: the tensor representation grows exponentially with the number of random variables. One way
to address this issue is of course to parameterize the probability as a low-rank tensor network!

We will show here how this can be done with the tensor train decomposition. This can also be done with other
decomposition models, but the tensor train format is particularly interesting and has been very successfully used in
quantum physics to model many-body systems ??.

Let T ∈ Rd1×···×dN be a probability tensor parameterized in the tensor train format:

T
d1 d4

d2 d3

= G1 G2 G3 G4
d2 d3 d4d1

R1 R2 R3
.

Since T represents a probability distribution, its entries must be non-negative and sum to one. However, it is not
clear which constraints one should impose on the core tensors G1, · · · , GN to ensure these two properties.

One easy way to ensure non-negativity of the entries of T is to constrain the core tensors to have non-negative
entries. Another way, with its root in quantum physics, is to assume that the entries of T are the square roots of the
probabilities, rather than the probabilities themselves: T i1,··· ,iN

=
√
P(X1 = i1, · · · , XN = iN). When T is in the

TT format, this corresponds to the following tensor network:

P(X1 = i1, · · · , X4 = i4) = T 2
i1,··· ,i4

= G1 G2 G3 G4

G1 G2 G3 G4

i1 i2 i3 i4

R1 R2 R3

i4 i2 i3i1

R1 R2 R3
.

To ensure that the probabilities sum to one, we can choose to model un-normalized probabilities, since, as we will
see, computing the normalization constant is very easy when the probability tensor is in TT format. Now we assume
that

P(X1 = i1, · · · , XN = iN) =
T 2

i1,··· ,iN

ζ

34

where ζ =
∑

i1,··· ,in
= T 2

i1,··· ,iN
is the normalization constant. Similarly to efficient operations in the TT format

presented in Section ??, this normalization factor can be computed efficiently in the TT format:

ζ =
∑

i1,··· ,iN

T 2
i1,··· ,i4

= G1 G2 G3 G4

G1 G2 G3 G4

d1 d2 d3 d4
R1 R2 R3

d4 d2 d3d1

R1 R2 R3
.

The idea above is also called Born Machine [Glasser et al., 2019, Han et al., 2018].

5.2 Computing Expectations of Random Tensor Networks
We begin this section by presenting two essential propositions about the expected value of the inner product of
independent random tensor networks and the outer product of random matrices, where the elements are drawn
identically and independently from the standard normal distribution.

Proposition 18. Let A and B be two random and independent tensor networks. Then their inner product in expectation
is

E

(
A B

)
= E(A) E(B) .

Proof. The result follows from the linearity of the expected value and the independence of A and B.

Proposition 19. Let A ∈ Rm×n be a random matrix whose elements are drawn identically and independently
distributed (i.i.d) from the standard normal distribution. Then the expected value of the outer product of A with itself is

E

(
A A

m n m n

)
=

nm

,

where the right-hand side is the outer product of two Kronecker delta (i.e.,
i1 i4i3i2

= δi1i3δi2i4 for

i1, i3 ∈ [m] and i2, i4 ∈ [n]).

Proof. Since the entries of A are drawn independently from N (0, 1), its vecorization follows a mutlivariate normal
distribution, vec(A) ∼ N (0, Imn), and thus E(vec(A)vec(A)T) = Imn. This means that

E(Ai1i2Ai3i4) =
{

1 if i1 = i3 and i2 = i4

0 otherwise,

hence, E(A ◦ A)i1i2i3i4 = E(Ai1i2Ai3i4) = δi1i3δi2i4 =
i1 i4i3i2

, for all i1, i3 ∈ [m] and i2, i4 ∈

[n].

Remark 20. Note that different orderings of indices of E(A ◦A) lead to the following tensor networks:

• E(A ◦A)i1i2i4i3 = E(Ai1i2Ai4i3) = δi1i4δi2i3 =
{

1 if i1 = i4 and i2 = i3

0 otherwise,
=

i1 i4i2 i3

,

• E(A ◦A)i1i4i2i3 = E(Ai1i4Ai2i3) = δi1i2δi4i3 =
{

1 if i1 = i2 and i3 = i4

0 otherwise,
=

i1 i2 i3 i4

.

Next, we show how Propositions 18 and 19 can be used to derive a very simple tensor network derivation of the
expected value of the product of a random matrix with gaussian entries with itself.

35

Proposition 21. If A ∈ Rm×n be a random matrix whose elements are drawn i.i.d from the standard normal distribution
then E(ATA) = mIn.

Proof. Using Propositions 18 and 19 we can write

E(ATA) = E
(

A A
mn n

)
= E


A

A
n

n

m

 Prop. 18=
A

A

n

n

mE


 E


 Prop. 19= mmn = mIn.

The final diagram is obtained by contracting the legs of size m. As observed, once the contraction is performed, the
resulting expression is simply the trace of the identity matrix, which corresponds to the circle of size m in the equality
above.

The previous proposition can be interpreted as a statement on the mean of a Wishart distribution. Recall that
sampling a matrix X from the Wishart distribution Wp(Σ, m), where Σ ∈ Rn×n is a covariance matrix, is done
by sampling each column of a matrix A ∈ Rm×n from the multivariate normal N (0, Σ) independently and setting
X = A⊤A. Hence, the matrix A⊤A in Proposition 18 follows the Wishart distribution Wishart distribution Wp(I, m).

Remark 22. As a consequence of Proposition 18, if A ∈ Rm×n is a random matrix with entries drawn from the
standard normal distribution, then E ∥A∥2

F = mn. This result can be extended to higher order tensors whose entries
are drawn i.i.d. from the standard normal distribution, e.g., if T ∈ Rd1×d2×···×dN then E ∥T ∥2

F = d1d2 · · · dN .

By leveraging the properties of random normal matrices from the previous propositions, we can compute the
expected norm of their product. Again, the proof of this proposition is very simple using tensor networks and would be
more intricate if we were to explicitly use indices and summations instead.

Proposition 23. Let A ∈ Rm×r and B ∈ Rr×n be random matrices whose entries are independently and identically
distributed (i.i.d.) according to the standard normal distribution with mean zero and variance one. Then, the expected
value of the squared Frobenius norm of their product is given by E∥AB∥2

F = mnr.

Proof. Using Proposition 18 we can write

E(∥AB∥2
F) = E

 A B
r

A B
r

m n

 = E


A A

m

r r

B B
n

r r


= A A

m
B B

nE

()
E

(
rr

)
,

and by Proposition 21 we have, E

 A A
m

r r

 = m

r

and E

 B B
n

r r

 = n

r

.

Since there are contractions between the legs of size r we finally obtain

E(∥AB∥2
F) = E

 A B
r

A B
r

m n

 = mn

r

rr

= mnr.

Now that we understand how to compute the expected norm of products of Gaussian random matrices, we can
extend this method to evaluate expectations of more complex tensor networks.

36

Example. Suppose we have an arbitrary tensor network, e.g., A = A B C

G

r1 r2
d1 d2 d3

m1 m2 m3

, where A ∈ Rm1×d1×r1 , B ∈

Rm2×r1×d2×r2 , C ∈ Rm3×r2×d3 and G ∈ Rd1×d2×d3 are tensors whose elements are drawn i.i.d. from the standard
normal distribution, and we want to compute the expectation of ∥A∥2

F . We can write it in tensor network graphical
notations:

E

∥∥∥∥∥∥∥∥∥∥∥∥
A B C

G

r1 r2
d1 d2 d3

m1 m2 m3

∥∥∥∥∥∥∥∥∥∥∥∥

2

F

= E


A B C

G

r1 r2
d1 d2 d3

A B C

G

r1 r2

d1 d2 d3

m1 m2 m3


,

by Proposition 21 we know E


A

A

 = m1 d1 r1 ,E


B

B

 = m2 d2r1 r2 , and E


C

C

 =

m3 d3r2 , and thus by Proposition 18 we can write:

E


A B C

r1 r2
d1 d2 d3

A B C
r1 r2

m1 m2 m3

d1 d2 d3

 =
A

A

m1

r1

r2

d1

d1

E


E


B

B

m2

r2

r2

d1

d2

E


C

C

m3

d3

d3

 = m1m2m3 d1

r1

d2

r2

d3

= m1m2m3r1r2 d1 d2 d3 .

Therefore again by Propisition 18 since G is independent of A, B and C we can write

E


A B C

G

r1 r2
d1 d2 d3

A B C

G

r1 r2

d1 d2 d3

m1 m2 m3


= m1m2m3r1r2E



G

G

d1 d2 d3


Prop. 21= m1m2m3r1r2d1d2d3.

We can see how efficiently complex computations can be performed using tensor networks. We can now introduce
more identities involving random Gaussian matrices.

1. The first identity is the result of Isserlis’ theorem [Isserlis, 1918].

Theorem 24. Let a ∈ Rn be a random vector whose elements are drawn i.i.d. from the normal distribution with

37

mean zero and variance one. Then

E(a⊗4) = E

 a a a a


= + +

where each term in the sum above corresponds to a different reshaping of the identity matrix. Note that in the
theorem above, the zero variance can be replaced with an arbitrary variance σ2. In that case, each term in the
final sum should be multiplied by a factor of σ2 accordingly.

Proof. Element-wise, by using Isserlis’ theorem and using the fact that a ∼ N (0, I), for i1, · · · , i4 ∈ [n], we
have

(E[a⊗4]))i1,i2,i3,i4 = E[ai1ai2ai3ai4] = E[ai1ai2]E[ai3ai4] + E[ai1ai3]E[ai2ai4] + E[ai1ai4]E[ai2ai3]
= δi1i2δi3i4 + δi1i3δi2i4 + δi1i4δi2i3 ,

which in tensor network notation gives:

E(a⊗4)i1i2i3i4 =
i1 i2 i3 i4

+
i1 i4i3i2

+
i1 i4i2 i3

.

We can also extend the result of Isserlis’ theorem to the case where the random variable takes the form of a
higher-order tensor. For example for the third order tensor A ∈ Rd1×d2×d3 and n = 4 we can write

E(A⊗4)i1···i4j1···j4r1···r4 =
j1 j2 j3 j4

i1 i2 i3 i4

r1 r2 r3 r4

+
j1 j4j3j2

i1 i4i3i2

r1 r4r3r2

+

i1 i4i2 i3

j1 j4j2 j3

r1 r4r2 r3

,

for j1, · · · , i4 ∈ [d1], j1, · · · , j4 ∈ [d2] and r1, · · · , r4 ∈ [d3]. As we can see above, we can follow this pattern
and find the 4th moments for any order of a tensor.

2. Using the above results, we can derive E((ATA)⊗2):

Proposition 25. Let A ∈ Rm×n be a random matrix whose elements are drawn i.i.d from the standard normal
distribution then

E((ATA)⊗2)) = m2
n n

+ m

n n

+ m

n

n

.

Proof. By applying Theorem 24 to matrices and using Proposition 21, we can derive the desired expression. To
present E((ATA)⊗2) element-wise using tensor networks, we observe that

E(A⊗4)i1,··· ,i4,j1,··· ,j4 = E

 A A A A

i1 j1 i2 j2 i3 j3 i4 j4



=
i1 i2 i3 i4

j1 j2 j3 j4

+
i1 i4i3i2

j1 j4j3j2

+
i1 i4i2 i3

j1 j4j2 j3

,

38

for i1, · · · , i4 ∈ [n] and j1, · · · , j4 ∈ [m]. It follows that:

E((ATA)⊗2)i1i2i3i4 = E

 A A A A
m m

i1 i2 i3 i4

 = E

 A A A A

i1 j1 i2 i3 i4



=
i1 i2 i3 i4

+
i1 i4i3i2

+
i1 i4i2 i3

= m2
i1 i2 i3 i4

+ m
i1 i4i3i2

+ m
i1 i4i2 i3

.

As we can see since j1 = j2 and j3 = j4, the corresponding legs should be contracted in the third equality.
Therefore, the circles of size m appear due to the contractions present in the network.

3. More generally, if A ∈ Rm×n is a random matrix with i.i.d. standard normal entries and T ∈ Rn×n×n×n is an
arbitrary random tensor independent of A , then contracting T with A yields:

E


A A A A

m m

n n n n

T

 =
∑

i1i2i3i4

E(T i1i2i3i4)(m2δi1i2δi3i4 + mδi1i3δi2i4 + mδi1i4δi2i3)

=

4. Let A ∈ Rm×n and B ∈ Rn×p be two random matrices whose elements are drawn i.i.d from the standard normal
distribution, then

E((AB)⊗2) = E

 A B A B
n n

m p m p

 = n

m p

.

Proof. Using Proposition 18 and 19 we can write:

E

 A B A B
n n

m p m p

 = E

 A A B B
m n m n n p n p



Prop. 18= A A B B
m n m n n p n p

E


E




Prop. 19=
m n n p

= n

m p

.

39

5. The next proposition is a useful formula a special case of Theorem 3.3.15 item (iv) of [Gupta and Nagar, 2018].

Proposition 26. Let A ∈ Rm×n be a random matrix with i.i.d. standard normal entries, and let X ∈ Rd×m be
a constant matrix then

E(tr(XAATXT)2) = n2 ∥X∥4
F + 2n tr((XTX)2).

Proof. We prove this identity by using tensor network notations:

E(tr(XAATXT)2) = E


X A A X

m n m
X A A X

m n m

d d


Prop. 18= A A A A

n n

X X X X
d d

E
()

E
()m m m m

= A A A A
n n

X X X X
d d

E
()

m m m m

,

The last equality is obtained by using the fact that the matrix X is a constant. By Proposition 25 we know:

E((ATA)⊗2)) = n2
m m

+ n

m m

+ n

m

m

. Therefore,

A A A A
n n

X X X X
d d

E
()

m m m m

=

 X X X X
d d

m m m m


n2

m m

+ n

m m

+ n

m

m



= n2
m m

X X
d

X X
d

+ n

m m

X X
d

X X
d

+ n

m

m

X X
d

X X
d

= n2
m m

X X
d

X X
d

+ 2n
X X

X X
d

d

m m
= n2 ∥X∥4

F + 2n tr((XTX)2).

40

References
Brett W Bader and Tamara G Kolda. Algorithm 862: Matlab tensor classes for fast algorithm prototyping. ACM

Transactions on Mathematical Software (TOMS), 32(4):635–653, 2006.

Jacob Biamonte and Ville Bergholm. Tensor networks in a nutshell. arXiv preprint arXiv:1708.00006, 2017.

Rasmus Bro. Multi-way analysis in the food industry, model, algorithms and applications. Doctoral Thesis, University
of Amsterdam, 1998.

Lam Chi-Chung, P Sadayappan, and Rephael Wenger. On optimizing a class of multi-dimensional loops with reduction
for parallel execution. Parallel Processing Letters, 7(02):157–168, 1997.

Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. A multilinear singular value decomposition. SIAM journal
on Matrix Analysis and Applications, 21(4):1253–1278, 2000.

Glen Evenbly. Gauge fixing, canonical forms, and optimal truncations in tensor networks with closed loops. Physical
Review B, 98(8):085155, 2018.

John Gardiner and Javier Lopez-Piqueres. Tensor network estimation of distribution algorithms. arXiv preprint
arXiv:2412.19780, 2024.

Ivan Glasser, Ryan Sweke, Nicola Pancotti, Jens Eisert, and Ignacio Cirac. Expressive power of tensor-network
factorizations for probabilistic modeling. Advances in neural information processing systems, 32, 2019.

Lars Grasedyck. Hierarchical singular value decomposition of tensors. SIAM journal on matrix analysis and applications,
31(4):2029–2054, 2010.

Arjun K Gupta and Daya K Nagar. Matrix variate distributions. Chapman and Hall/CRC, 2018.

Wolfgang Hackbusch and Stefan Kühn. A new scheme for the tensor representation. Journal of Fourier analysis and
applications, 15(5):706–722, 2009.

Zhao-Yu Han, Jun Wang, Heng Fan, Lei Wang, and Pan Zhang. Unsupervised generative modeling using matrix product
states. Physical Review X, 8(3):031012, 2018.

Christopher J Hillar and Lek-Heng Lim. Most tensor problems are np-hard. Journal of the ACM (JACM), 60(6):1–39,
2013.

Frank L Hitchcock. The expression of a tensor or a polyadic as a sum of products. Journal of Mathematics and Physics,
6(1-4):164–189, 1927.

Sebastian Holtz, Thorsten Rohwedder, and Reinhold Schneider. The alternating linear scheme for tensor optimization
in the tensor train format. SIAM Journal on Scientific Computing, 34(2):A683–A713, 2012.

Leon Isserlis. On a formula for the product-moment coefficient of any order of a normal frequency distribution in any
number of variables. Biometrika, 12(1/2):134–139, 1918.

Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review, 51(3):455–500, 2009.

Tamara Gibson Kolda. Multilinear operators for higher-order decompositions. Technical report, Sandia National
Laboratories (SNL), Albuquerque, NM, and Livermore, CA . . . , 2006.

Joseph B Kruskal. Rank, decomposition, and uniqueness for 3-way and n-way arrays. In Multiway data analysis, pages
7–18. 1989.

Hai-Jun Liao, Jin-Guo Liu, Lei Wang, and Tao Xiang. Differentiable programming tensor networks. Physical Review X,
9(3):031041, 2019.

Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and Dmitry P Vetrov. Tensorizing neural networks. Advances
in neural information processing systems, 28, 2015.

41

Román Orús. A practical introduction to tensor networks: Matrix product states and projected entangled pair states.
Annals of physics, 349:117–158, 2014.

Ivan V Oseledets. Approximation of 2ˆd\times2ˆd matrices using tensor decomposition. SIAM Journal on Matrix
Analysis and Applications, 31(4):2130–2145, 2010.

Roger Penrose et al. Applications of negative dimensional tensors. Combinatorial mathematics and its applications, 1:
221–244, 1971.

Age K Smilde, Rasmus Bro, and Paul Geladi. Multi-way analysis: applications in the chemical sciences. John Wiley &
Sons, 2005.

Ledyard R Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3):279–311, 1966.

Frank Verstraete and J Ignacio Cirac. Renormalization algorithms for quantum-many body systems in two and higher
dimensions. arXiv preprint cond-mat/0407066, 2004.

Ling Wang, Ying-Jer Kao, and Anders W Sandvik. Plaquette renormalization scheme for tensor network states. Physical
Review E—Statistical, Nonlinear, and Soft Matter Physics, 83(5):056703, 2011.

Wenqi Wang, Vaneet Aggarwal, and Shuchin Aeron. Efficient low rank tensor ring completion. In Proceedings of the
IEEE International Conference on Computer Vision, pages 5697–5705, 2017.

Wenqi Wang, Yifan Sun, Brian Eriksson, Wenlin Wang, and Vaneet Aggarwal. Wide compression: Tensor ring nets. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 9329–9338, 2018.

Longhao Yuan, Jianting Cao, Xuyang Zhao, Qiang Wu, and Qibin Zhao. Higher-dimension tensor completion via
low-rank tensor ring decomposition. In 2018 Asia-Pacific Signal and Information Processing Association Annual
Summit and Conference (APSIPA ASC), pages 1071–1076. IEEE, 2018.

Qibin Zhao, Guoxu Zhou, Shengli Xie, Liqing Zhang, and Andrzej Cichocki. Tensor ring decomposition. arXiv preprint
arXiv:1606.05535, 2016.

42

	Tensor Networks Basics
	What are Tensor Networks?
	Inner Product, Outer Product, Trace and Norm
	Copy Tensors (Hyperedges)
	Matrix Factorization in Tensor Networks

	Operations on Tensors
	Permute and Reshape Tensors
	Products
	Useful TN results

	Tensor Decompositions
	CANDECOMP/PARAFAC (CP) Decomposition
	Tucker Decomposition
	Tensor Train (TT) Decomposition
	Efficient Operations in TT Format.
	Other decompositions: Tensor Ring, PEPS & Hierarchical Tucker

	Computing Gradients with Tensor Networks
	Jacobians
	Applications

	Probability Distributions and Random Vectors
	Probability Distributions and Tensor Decompositions
	Probability Distributions as Tensors
	Tensor Train Parameterization of Probability Distributions

	Computing Expectations of Random Tensor Networks

